

Starbound Software

RB Whitaker

The C# Player’s Guide
Third Edition

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the author and publisher were aware of

those claims, those designations have been printed with initial capital letters or in all capitals.

The author and publisher of this book have made every effort to ensure that the information in this book

was correct at press time. However, the author and publisher do not assume, and hereby disclaim any

liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such

errors or omissions result from negligence, accident, or any other cause.

Copyright © 2012-2017 by RB Whitaker

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage and retrieval

system, without written permission from the author, except for the inclusion of brief quotations in a

review. For information regarding permissions, write to:

RB Whitaker

rbwhitaker@outlook.com

ISBN-10: 0-9855801-3-5

ISBN-13: 978-0-9855801-3-1

1 Contents at a

Glance

 Acknowledgements xvii

 Introduction xix

Part 1: Getting Started

1. The C# Programming Language 3

2. Installing Visual Studio 6

3. Hello World: Your First C# Program 10

4. Comments 19

Part 2: The Basics

5. Variables 25

6. The C# Type System 31

7. Basic Math 42

8. User Input 48

9. More Math 53

10. Decision Making 60

11. Switch Statements 68

12. Looping 72

13. Arrays 78

14. Enumerations 84

15. Methods 87

16. Value and Reference Types 98

iv Contents at a Glance

Part 3: Object-Oriented Programming

17. Object-Oriented Basics 107

18. Making Your Own Classes 112

19. Properties 124

20. Tic-Tac-Toe 130

21. Structs 138

22. Inheritance 144

23. Polymorphism, Virtual Methods, and Abstract Classes 151

24. Interfaces 156

25. Using Generics 160

26. Making Generic Types 167

Part 4: Advanced Topics

27. Namespaces and Using Directives 175

28. Methods Revisited 180

29. Reading and Writing Files 190

30. Error Handling and Exceptions 194

31. Pattern Matching 201

32. Delegates 206

33. Events 212

34. Operator Overloading 219

35. Indexers 223

36. Extension Methods 226

37. Lambda Expressions 230

38. Query Expressions 236

39. Threads 245

40. Asynchronous Programming 251

41. Dynamic Objects 259

42. Unsafe Code 265

43. Other Features in C# 271

Part 5: Mastering the Tools

44. The .NET Platform 301

45. Getting the Most from Visual Studio 313

46. Dependencies and Multiple Projects 319

47. Handling Common Compiler Errors 326

48. Debugging Your Code 333

49. How Your Project Files are Organized 339

Contents at a Glance v

Part 6: Wrapping Up

50. Try It Out! 345

51. What’s Next? 351

 Glossary 354

 Tables and Charts 369

 Index 374

2 Table of Contents

 Acknowledgements xvii

 Introduction xix

The Player’s Guide xix

How This Book is Organized xx

Getting the Most from This Book xxii

I Genuinely Want Your Feedback xxiii

This Book Comes with Online Content xxiii

Part 1: Getting Started

1. The C# Programming Language 3

What is C#? 3

What is the .NET Platform? 4

C# and .NET Versions 5

2. Installing Visual Studio 6

Versions of Visual Studio 7

The Installation Process 7

C# Programming on Mac and Linux 9

3. Hello World: Your First C# Program 10

Creating a New Project 10

A Brief Tour of Visual Studio 11

Building Blocks: Projects, Solutions, and Assemblies 12

Modifying Your Project 13

Compiling and Running Your Project 14

A Closer Look at Your Program 16

 vii

Whitespace Doesn’t Matter 17

Semicolons 18

4. Comments 19

What is a Comment? 19

Why Should I Use Comments? 19

How to Make Comments in C# 20

How to Make Good Comments 21

Part 2: The Basics

5. Variables 25

What is a Variable? 25

Creating Variables 26

Assigning Values to Variables 27

Retrieving the Contents of a Variable 27

How Data is Stored 28

Multiple Declarations and Assignments 29

Good Variable Names 29

6. The C# Type System 31

An Introduction to the Type System 31

The ‘int’ Type 31

The ‘byte’, ‘short’, and ‘long’ Types 32

The ‘sbyte’, ‘ushort’, ‘uint’, and ‘ulong’ Types 32

The ‘char’ Type 33

The ‘float’, ‘double’, and ‘decimal’ Types 34

The ‘bool’ Type 36

The ‘string’ Type 36

Numeric Literal Variations 38

Type Inference 40

7. Basic Math 42

Operations and Operators 42

Addition, Subtraction, Multiplication, and Division 43

The Remainder Operator 44

Unary ‘+’ and ‘-‘ Operators 45

Operator Precedence and Parentheses 46

Why the ‘=‘ Sign Doesn’t Mean Equals 46

Compound Assignment Operators 47

8. User Input 48

User Input from the Console 48

Converting Types 48

A Complete Sample Program 49

viii Table of Contents

Escape Characters 51

String Interpolation 52

9. More Math 53

Integer Division 54

Working with Different Types and Casting 55

Division by Zero 56

Infinity, NaN, e, π, MinValue, and MaxValue 56

Overflow and Underflow 57

Incrementing and Decrementing 58

10. Decision Making 60

The ‘if’ Statement 61

The ‘else’ Statement 62

‘else if’ Statements 62

Curly Braces Not Always Needed 63

Relational Operators: ==, !=, <, >, <=, >= 63

Using ‘bool’ in Decision Making 65

The ‘!’ Operator 65

Conditional Operators: && and || (And and Or) 66

Nesting If Statements 66

The Conditional Operator ?: 67

11. Switch Statements 68

The Basics of Switch Statements 68

Types Allowed with Switch Statements 70

No Implicit Fall-Through 70

12. Looping 72

The While Loop 72

The Do-While Loop 74

The For Loop 74

Breaking Out of Loops 75

Continuing to the Next Iteration of the Loop 75

Nesting Loops 76

Still to Come: Foreach 77

13. Arrays 78

What is an Array? 78

Creating Arrays 79

Getting and Setting Values in Arrays 79

More Ways to Create Arrays 80

Array Length 80

Some Examples with Arrays 80

Arrays of Arrays and Multi-Dimensional Arrays 81

The ‘foreach’ Loop 82

 ix

14. Enumerations 84

The Basics of Enumerations 84

Why Enumerations are Useful 86

Underlying Types 86

Assigning Numbers to Enumeration Values 86

15. Methods 87

Creating a Method 88

Calling a Method 89

Returning Stuff from a Method 90

Passing Stuff to a Method 92

Passing in Multiple Parameters 92

Method Overloading 93

Revisiting the Convert and Console Classes 95

XML Documentation Comments 95

The Minimum You Need to Know About Recursion 96

16. Value and Reference Types 98

The Stack and the Heap 98

Memory Management and Garbage Collection 99

References 100

Value Types and Reference Types 100

Null: References to Nothing 102

Value and Reference Semantics 103

Part 3: Object-Oriented Programming

17. Object-Oriented Basics 107

Object Classes and Object Instances 107

Working with an Existing Class 108

Using an Instance 109

The Power of Objects 110

Classes are Reference Types 110

18. Making Your Own Classes 112

Creating a New Class 112

Instance Variables 114

Access Modifiers: private and public 114

Constructors 115

Methods 118

The ‘static’ Keyword 120

Using Our Class 121

The ‘internal’ Access Modifier 121

Class Design and Software Engineering 122

x Table of Contents

19. Properties 124

The Motivation for Properties 124

Creating Properties 125

Different Accessibility Levels 127

Auto-Implemented Properties 127

Object Initializer Syntax 128

Anonymous Types 129

20. Tic-Tac-Toe 130

Requirements 130

High-Level Design 131

Refactoring and Iterative Design 132

The Full Solution 132

21. Structs 138

Creating a Struct 138

Structs vs. Classes 139

Deciding Between a Struct and a Class 140

Prefer Immutable Value Types 141

The Built-In Types are Aliases 142

22. Inheritance 144

Base Classes 145

Derived Classes 145

Using Derived Classes 146

Constructors and Inheritance 147

The ‘protected’ Access Modifier 148

The Base Class of Everything: object 148

Sealed Classes 148

Partial Classes 149

C# Does Not Support Multiple Inheritance 150

23. Polymorphism, Virtual Methods, and Abstract Classes 151

Polymorphism 151

Revisiting the ‘base’ Keyword 153

Abstract Base Classes 154

The ‘new’ Keyword with Methods 154

24. Interfaces 156

What is an Interface? 156

Creating an Interface 157

Using Interfaces 158

Multiple Interfaces and Inheritance 159

25. Using Generics 160

The Motivation for Generics 160

What are Generics? 162

 xi

The List Class 162

The IEnumerable<T> Interface 164

The Dictionary Class 165

26. Making Generic Types 167

Creating Your Own Generic Types 167

Using Your Generic Type in Your Class 168

Generic Type Constraints 169

Generic Methods 171

The Default Operator 171

Part 4: Advanced Topics

27. Namespaces and Using Directives 175

Namespaces 175

Fully Qualified Names 176

Using Directives 176

The Error ‘The type or namespace X could not be found’ 176

Name Collisions 178

Static Using Directives 179

28. Methods Revisited 180

Local Functions 180

Optional Parameters 181

Named Parameters 182

Variable Number of Parameters 182

The ‘out’ and ‘ref’ Keywords 183

Returning Multiple Values 186

29. Reading and Writing Files 190

The File Class 190

Text-Based Files 192

Binary Files 193

30. Error Handling and Exceptions 194

How Exception Handling Works 195

Catching Exceptions 196

Handling Different Exceptions in Different Ways 197

Throwing Exceptions 197

The ‘finally’ Keyword 199

Exception Filters 200

Some Rules about Throwing Exceptions 200

31. Pattern Matching 201

Contrasted with Regular Expressions 201

The Pattern Concept 202

xii Table of Contents

Available Patterns 202

Using Patterns in C# 203

Expect Patterns to Expand 205

32. Delegates 206

Delegates: Treating Methods like Objects 206

Creating a Delegate 206

Using Delegates 207

The Delegate and MulticastDelegate Classes 208

Delegate Chaining 209

The Action and Func Delegates 211

33. Events 212

Defining an Event 213

Raising an Event 214

Attaching and Detaching Event Handlers 215

Common Delegate Types Used with Events 216

The Relationship between Delegates and Events 218

34. Operator Overloading 219

Overloading Operators 220

35. Indexers 223

How to Make an Indexer 223

Using Other Types as an Index 224

Index Initializer Syntax 225

36. Extension Methods 226

Creating an Extension Method 227

37. Lambda Expressions 230

The Motivation for Lambda Expressions 230

Lambda Expressions 232

Multiple and Zero Parameters 233

Type Inference Failures and Explicit Types 233

Statement Lambdas 233

Scope in Lambda Expressions 233

Expression-Bodied Members 234

Lambdas vs. Local Functions 235

38. Query Expressions 236

From Clauses 238

Select Clauses 239

Where Clauses 239

Multiple From Clauses 239

Let Clauses 240

Join Clauses 240

Orderby Clauses 240

 xiii

Group Clauses 241

Into Clauses 242

Group Joins 242

Query Syntax and Method Call Syntax 243

Queries are Lazy When Possible 243

39. Threads 245

Threading Code Basics 246

Using ParameterizedThreadStart 247

Thread Safety 249

40. Asynchronous Programming 251

What is Asynchronous Programming? 251

Approaches from the Early Days 252

The Task-based Asynchronous Pattern 255

The ‘async’ and ‘await’ Keywords 256

41. Dynamic Objects 259

Dynamic Type Checking 260

Dynamic Objects and the Dynamic Language Runtime 260

Emulating Dynamic Objects with Dictionaries 261

ExpandoObject 262

Extending DynamicObject 262

When to Use Dynamic Object Variations 264

42. Unsafe Code 265

Unsafe Contexts 265

Pointer Types 266

Stack Allocations 267

Fixed Statements 268

Fixed Size Arrays 269

Calling Native Code with Platform Invocation Services 270

43. Other Features in C# 271

Iterators and the Yield Keyword 272

Constants 273

Attributes 274

The ‘nameof’ Operator 275

The ‘sizeof’ Operator 276

Bit Fields 277

Reflection 280

Using Statements and the IDisposable Interface 280

Preprocessor Directives 281

Nullable Types 283

Simple Null Checks: Null Propagation Operators 283

xiv Table of Contents

Command Line Arguments 285

User-Defined Conversions 286

The Notorious ‘goto’ Keyword 287

Generic Covariance and Contravariance 290

Advanced Namespace Management 293

Checked and Unchecked Contexts 294

Volatile Fields 295

Part 5: Mastering the Tools

44. The .NET Platform 301

Overview of the .NET Platform 301

A Brief History of the .NET Platform 304

Binary, Assembly, and Compilers 304

Virtual Machines and the Common Language Runtime 306

The .NET Standard Library 308

The .NET Framework 309

.NET Core 310

Xamarin 310

App Models 311

45. Getting the Most from Visual Studio 313

Windows 313

The Options Dialog 315

Including and Excluding Files 315

Showing Line Numbers 316

IntelliSense 316

Basic Refactoring 317

Keyboard Shortcuts 317

46. Dependencies and Multiple Projects 319

Adding DLL References 320

NuGet Packages 321

Creating and Referencing Multiple Projects 323

47. Handling Common Compiler Errors 326

Understanding Compiler Errors 326

Compiler Warnings 326

Common Compiler Errors 327

General Tips for Handling Errors 331

48. Debugging Your Code 333

Launching Your Program in Debug Mode 333

Viewing Exceptions 334

Editing Your Code While Debugging 335

Breakpoints 336

 xv

Stepping Through Your Program 336

49. How Your Project Files are Organized 339

Visual Studio’s Projects Directory 340

The Solution Directory 340

The Project Directory 341

Part 6: Wrapping Up

50. Try It Out! 345

Message from Julius Caesar 346

Reverse It! 346

Pig Dice 347

Connect Four 347

Conway’s Game of Life 348

51. What’s Next? 351

Other Frameworks and Libraries 351

Other Topics 352

Make Some Programs 352

Where Do I Go to Get Help? 353

Parting Words 353

 Glossary 354

 Tables and Charts 369

 Index 374

3 Acknowledgements

The task of writing a book is like writing software. When you start, you’re sure it’s only going to take a few

weeks. It’ll be easy, you think. But as you start working, you start seeing that you’re going to need to make

changes, and lots of them. You need to rearrange entire chapters, add topics you hadn’t even thought

about, and you discover that there’s not even going to be a place in your book for that chapter called

Muppets of the Eastern Seaboard.

I couldn’t have ever finished this book without help. I’ll start by thanking Jack Wall, Sam Hulick, Clint

Mansell, and the others who wrote the music for Mass Effect. (You think I’m joking, don’t you?) I listened to

their music nearly incessantly as I wrote this book. Because of them, every moment of the creation of this

book felt absolutely epic.

I need to also thank the many visitors to my game development tutorials site, who provided feedback on

the early versions of this work. In particular, I want to thank Jonathan Loh, Thomas Allen, Daniel Bickler,

and Mete ÇOM, who went way above and beyond, spending hours of their own personal time, reading

through this book and provided detailed critique and corrections. With their help, this book is far more

useful and valuable.

I also need to thank my mom and dad. Their confidence in me and their encouragement to always do the

best I can has caused me to do things I never could have done without them.

Most of all, I want to thank my beautiful wife, who was there to lift my spirits when the weight of writing a

book became unbearable, who read through my book and gave honest, thoughtful, and creative feedback

and guidance, and who lovingly pressed me to keep going on this book, day after day. Without her, this

book would still be a random scattering of Word documents, buried in some obscure folder on my

computer, collecting green silicon-based mold.

To all of you, I owe you my sincerest gratitude.

-RB Whitaker

4 Introduction

The Player’s Guide

This book is not about playing video games. (Though programming is as fun as playing video games for

many people.) Nor is it about making video games, specifically. (Though you definitely can make video

games with C#.)

Instead, think of this book like a player’s guide, but for a programming language. A player’s guide is a

popular kind of book that is written to help game players:

 learn the basics of the game,

 prevent them from getting stuck,

 understand how the world they’re playing in works,

 learn how to overcome the obstacles and enemies they face,

 point out common pitfalls they may face and locate useful items,

 and master the tools they’re given.

This book accomplishes those same goals for the C# programming language. I’ll walk you through the

language from the ground up, point out places where people get stuck, provide you with hands-on

examples to explore, give you quizzes to ensure you’re on the right track, and describe how to use the

tools that you’ll need to create programs. I’ll show you the ins and outs of the many features of C#,

describing why things work the way they do, rather than just simple mechanics and syntax.

In a Nutshell
 Describes the goals of this book, which is to function like a player’s guide, not a

comprehensive cover-everything-that-ever-existed book.

 Breaks down how the book is organized from a high-level perspective, as well as pointing out

some of the extra “features” of the book.

 Provides some ideas on how to get the most out of this book for programmers, beginners,

and anyone who is short on time.

xx Introduction

My goal is to provide you with the “dungeon map” to direct you as you begin delving into C#, while still

allowing you to mostly explore whatever you want, whenever you want.

I want to point out that this book is intentionally not called Everything you Need to Know about C#, or The

Comprehensive Guide to C#. (Note that if books with those titles actually exist, I’m not referring to them

specifically, but rather, to just the general idea of an all-encompassing book.) I’m here to tell you, when

you’re done with this book, you’ll still have lots to learn about C#.

But guess what? That’s going to happen with any book you use, including those all-encompassing books.

Programming languages are complex creations, and there are enough dark corners and strange

combinations that nobody can learn everything there is to know about them. In fact, I’ve even seen the

people who designed the C# language say they just learned something new about it! For as long as you

use C#, you’ll constantly be learning new things about it, and that’s actually one of the things that makes

programming interesting.

I’ve tried to cover a lot of ground in this book, and with roughly 400 pages, anyone would expect that to

be quite a bit. And it is. But there are plenty of other books out there that are 800 or even 1200 pages

long. A book so heavy, you’ll need a packing mule to carry it anywhere. That, or permanently place it on

the central dais of an ancient library, with a single beam of dusty light shining in on it through a hole in

the marble ceiling. Instead of all that, the goal of this book is effectiveness and clarity, not

comprehensiveness. Something that will fit both on your shelf and in your brain.

It is important to point out that this book is focused on the C# programming language, rather than

libraries for building certain specific application types. So while you can build desktop applications, web

pages, and computer games with C#, we won’t be discussing WPF, ASP.NET, DirectX, or any other

platform- or framework-specific code. Instead, we’ll focus on core C# code, without bogging you down

with those additional libraries at first. Once you’ve got the hang of C#, heading into one of those areas will

be much easier.

How This Book is Organized

This book is divided into six parts. Part 1 describes what you need to get going. You’ll learn how to get set

up with the free software that you need to write code and make your first C# program.

Part 2 describes the basics of procedural programming—how to tell the computer, step-by-step, what to

do to accomplish tasks. It covers things like how information is stored (in variables), how to make

decisions, loop over things repeatedly, and put blocks of code that accomplish specific tasks into a

reusable chunk called a method. It also introduces the type system of the C# language, which is one of

the key pieces of C# programming.

Part 3 goes into object-oriented programming, introducing it from the ground up, but also getting into a

lot of the details that make it so powerful. Chapter 20, in my opinion, is the critical point of the book. By

Chapter 19, we’ve introduced all of the key concepts needed to make almost any C# program, including

classes, which is the most powerful way C# provides for building your own data types. Chapter 20

contains the task (and solution) to making a simple but complete game of Tic-Tac-Toe, which will put all of

the knowledge from the earlier chapters to the test. Everything we do after this chapter is simply fleshing

out details and giving you better tools to get specific jobs done faster.

Part 4 covers some common programming tasks, as well as covering some of the more advanced features

of C#. For the most part, these topics are independent of each other, and once you’ve made it past that

critical point in Chapter 20, you should be able to do these at any time you want.

How This Book is Organized xxi

Part 5 changes gears, and covers more details about Visual Studio, which you use to create C# programs,

additional information about the .NET Platform, and some tools, tricks, and information you can use as

you program.

Finally, Part 6 wraps up the book with some larger scale programs for you to try making, a chapter on

where to go next as you continue to learn C#, and a glossary of words that are defined throughout the

book, which you can use as a reference when you run across a word or phrase that you are unfamiliar

with or have forgotten about.

Try It Out!
Scattered throughout the book are a variety of sections labeled Try It Out! These sections give you simple

challenge problems and quizzes that give you a chance to play around with the new concepts in the

chapter and test your understanding. If this were a class, these would be the homework.

The purpose of these Try It Out! sections is to help you get some real world practice with the new

information. You can’t learn to drive a car by reading the owner’s manual, and you can’t learn to program

without writing any code.

I strongly encourage you to spend at least a few minutes doing each of these challenges to help you

understand what you’re reading and ensure that you’ve learned what you needed to.

If you have something else you want to explore with the new concepts instead of the challenges I’ve

provided, all the better. The only thing better than playing around with this stuff is doing something with

it that you have a personal interest in. If you want to explore a different direction, go for it!

At the end of the book, in Chapter 50, I have an entire chapter full of larger, tougher challenge problems

for you to try out. These problems involve combining concepts from many chapters together into one

program. Going through some or all of these as you’re finishing up will be a great way to make sure you’ve

learned the most important things you needed to.

The most important thing to remember about these Try It Out! sections is that the answers are all online. If

you get stuck, or just want to compare your solution to someone else’s, you can see mine at

starboundsoftware.com/books/c-sharp/try-it-out/. I should point out that just because your solution

is different from mine (or anyone else’s) doesn’t necessarily mean it is wrong. That’s one of the best parts

about programming—there’s always more than one way to do something.

In a Nutshell
At the beginning of each chapter, I summarize what it contains. These sections are designed to do the

following:

 Summarize the chapter to come.

 Show enough of the chapter so that an experienced programmer can know if they already know

enough to skip the chapter or if they need to study it in depth.

 Review the chapter enough to ensure that you got what you needed to from the chapter. For

instance, imagine you’re about to take a test on C#. You can jump from chapter to chapter,

reading the In a Nutshell sections, and anything it describes that you didn’t already know, you can

then go into the chapter and review it.

In Depth
On occasion, there are a few topics that are not critical to your understanding of C#, but they are an

interesting topic that is related to the things you’re learning. You’ll find this information pulled out into In

Depth sections. These are never required reading, so if you’re busy, skip ahead. If you’re not too busy, I

think you’ll find this additional information interesting, and worth taking the time to read.

xxii Introduction

Glossary
As you go through this book, you’re going to learn a ton of new words and phrases. Especially if you’re

completely new to programming in general. At the back of this book is a glossary that contains the

definitions for these words. You can use this as a reference in case you forget what a word means, or as

you run into new concepts as you learn C#.

Getting the Most from This Book

For Programmers
If you are a programmer, particularly one who already knows a programming language that is related to

C# (C, C++, Java, Visual Basic .NET, etc.) learning C# is going to be relatively easy for you.

C# has a lot in common with all of these languages. In fact, it’s fair to say that all programming languages

affect and are inspired by other languages, because they evolve over time. C# looks and feels like a

combination of Java and C++, both of which have roots that go back to the C programming language.

Visual Basic .NET (VB.NET) on the other hand, looks and feels quite different from C# (it’s based on Visual

Basic, and Basic before that) but because both C# and VB.NET are designed and built for the .NET

Platform, they have many of the same features, and there’s almost a one-to-one correspondence between

features and keywords.

Because C# is so closely tied to these other languages, and knowing that many people may already know

something about these other languages, you’ll see me point out how C# compares to these other

languages from time to time.

If you already know a lot about programming, you’re going to be able to move quickly through this book,

especially the beginning, where you may find very few differences from languages you already know. To

speed the process along, read the In a Nutshell section at the start of the chapter. If you feel like you

already know everything it describes, it’s probably safe to skip to the next chapter.

I want to mention a couple of chapters that might be a little dangerous to skip. Chapter 6 introduces the

C# type system, including a few concepts that are key to building types throughout the book. Also,

Chapter 16 is sort of a continuation on the type system, describing value and reference types. It’s

important to understand the topics covered in those chapters. Those chapters cover some of the

fundamental ways that C# is different from these other languages, so don’t skip them.

For Busy People
One of the best parts about this book is that you don’t need to read it all. Yes, that’s right. It’s not all

mandatory reading to get started with C#. You could easily get away with only reading a part of this book,

and still understand C#. In fact, not only understand it, but be able to make just about any program you

can dream up. This is especially true if you already know a similar programming language.

At a minimum, you should start at the beginning and read through Chapter 20. That covers the basics of

programming, all the way up to and including an introduction to making your own classes. (And if you’re

already a programmer, you should be able to fly through those introductory chapters quickly.)

The rest of the book could theoretically be skipped, though if you try to use someone else’s code, you’re

probably going to be in for some surprises.

Once you’ve gone through those 20 chapters, you can then come back and read the rest of the book in

more or less any order that you want, as you have extra time.

For Beginners
If you’ve never done any programming before, be warned: learning a programming language can be hard

work. The concepts in the first 20 chapters of this book are the most important to understand. Take

I Genuinely Want Your Feedback xxiii

whatever time is necessary to really feel like you understand what you’re seeing in these chapters. This

gets you all of the basics, and gets you up to a point where you can make your own types using classes.

Like with the For Busy People section above, Chapter 20 is the critical point that you’ve got to get to, in

order to really understand C#. At that point, you can probably make any program that you can think of,

though the rest of the book will cover additional tools and tricks that will allow you to do this more easily

and more efficiently.

After reading through these chapters, skim through the rest of the book, so that you’re aware of what else

C# has. That’s an important step if you’re a beginner. It will familiarize you with what C# has to offer, and

when you either see it in someone else’s code or have a need for it, you’ll know exactly where to come

back to. A lot of these additional details will make the most sense when you have an actual need for it in a

program of your own creation. After a few weeks or a few months, when you’ve had a chance to make

some programs on your own, come back and go through the rest of the book in depth.

I Genuinely Want Your Feedback

Writing a book is a huge task, and no one has ever finished a huge task perfectly. There’s the possibility of

mistakes, plenty of chances to inadvertently leave you confused, or leaving out important details. I was

tempted to keep this book safe on my hard drive, and never give it out to the world, because then those

limitations wouldn’t matter. But alas, my wife wouldn’t let me follow Gandalf’s advice and “keep it secret;

keep it safe,” and so now here it is in your hands.

If you ever find any problems with this book, big or small, or if you have any suggestions for improving it,

I’d really like to know. After all, books are a lot like software, and there’s always the opportunity for future

versions that improve upon the current one. Also, if you have positive things to say about the book, I’d

love to hear about that too. There’s nothing quite like hearing that your hard work has helped somebody.

To give feedback of any kind, please visit starboundsoftware.com/books/c-sharp/feedback.

This Book Comes with Online Content

On my website, I have a small amount of additional content that you might find useful. For starters, as

people submit feedback, like I described in the last section, I will post corrections and clarifications as

needed on this book’s errata page: starboundsoftware.com/books/c-sharp/errata.

Also on my site, I will post my own answers for all of the Try It Out! sections found throughout this book. If

you get stuck, or just want something to compare your answers with, you can visit this book’s site and see

a solution. To see these answers, go to: starboundsoftware.com/books/c-sharp/try-it-out/.

The website also contains some extra problems to work on, beyond the ones contained in this book. I’ve

been frequently asked to add more problems to the book than what it currently has. Indeed, this version

contains more than any previous version. But at the same time, most people don’t actually do these

problems. To avoid drowning out the actual content with more and more problems, I’ve provided

additional problems on the website. This felt like a good compromise. These can be found at

starboundsoftware.com/books/c-sharp/additional-problems.

Additional information or resources may be found at starboundsoftware.com/books/c-sharp.

Part 1
Getting Started

The world of C# programming lies in front of you, waiting to be explored. In Part 1 of this book, within

just a few short chapters, we’ll do the following:

 Get a quick introduction to what C# is (Chapter 1).

 Get set up to start making C# programs (Chapter 2).

 Write our first program (Chapter 3).

 Dig into the fundamental parts of C# programming (Chapters 3 and 4).



1
1 The C# Programming

Language

I’m going to start off this book with a very brief introduction to C#. If you’re already a programmer, and

you’ve read the Wikipedia pages on C# and the .NET Framework, skip ahead to the next chapter.

On the other hand, if you’re new to programming in general, or you’re still a little vague on what exactly

C# or the .NET Platform is, then this is the place for you.

I should point out that we’ll get into a lot of detail about how the .NET Platform functions, and what it

gives you as a programmer in Chapter 44. This chapter just provides a quick overview of the basics.

What is C#?

Computers only understand binary: 1’s and 0’s. All of the information they keep track of is ultimately

nothing more than a glorified pile of bits. All of the instructions they run and all of the data they process

are binary.

But humans are notoriously bad at doing anything with a giant pile of 1’s and 0’s. So rather than doing

that, we created programming languages, which are based on human languages (usually English) and

structured in a way that allows you to give instructions to the computer. These instructions are called

source code, and are simple text files.

When the time is right, your source code will be handed off to a special program called a compiler, which

is able to take it and turn it into the binary 1’s and 0’s that the computer understands, typically in the form

In a Nutshell
 Describes the general idea of programming, and goes into more details about why C# is a

good language.

 Describes the core of what the .NET Platform is.

 Gives some history on the C# programming language for context.

4 Chapter 1 The C# Programming Language

of an EXE file. In this sense, you can think of the compiler as a translator from your source code to the

binary machine instructions that the computer knows.

There are thousands, maybe tens of thousands of programming languages, each good at certain things,

and less good at other things. C# is one of the most popular. C# is a simple general-purpose

programming language, meaning you can use it to create pretty much anything, including desktop

applications, server-side code for websites, and even video games.

C# provides an excellent balance between ease of use and power. There are other languages that provide

less power and are easier to use (like Java) and others that provide more power, giving up some of its

simplicity (like C++). Because of the balance it strikes, it is the perfect language for nearly everything that

you will want to do, so it’s a great language to learn, whether it’s your first or your tenth.

What is the .NET Platform?

C# relies heavily on something called the .NET Platform. It is also commonly also called the .NET

Framework, though we’ll make a subtle distinction between the two later on. The .NET Platform is a large

and powerful platform, which we’ll discuss in detail in Chapter 44. You can go read it as soon as you’re

done with this chapter, if you want.

The .NET Platform is vast, with many components, but two stand out as the most central. The first part is

the Common Language Runtime, often abbreviated as the CLR. The CLR is a software program that takes

your compiled C# code and runs it. When you launch your EXE file, the CLR will start up and begin taking

your code and translating it into the optimal binary instructions for the physical computer that it is

running on, and your code comes to life.

In this sense, the CLR is a middle-man between your code and the physical computer. This type of

program is called a virtual machine. We’ll get into more of the specifics in Chapter 44. For now, it’s only

important to know that the .NET Platform itself, specifically the CLR runtime, play a key role in running

your application—and in making it so your application can run on a wide variety of computer

architectures and operating systems.

The second major component of the .NET Platform is the .NET Standard Library. The Standard Library is

frequently called the Base Class Library. The Standard Library is a massive collection of code that you can

reuse within your own programs to accelerate the development of whatever you are working on. We will

cover some of the most important things in the Standard Library in this book, but it is huge, and deserves

a book of its own. More detail on the Standard Library and the Base Class Library can be found in Chapter

44.

Built on top of the .NET Standard Library is a collection of app models. An app model is another large

library designed for a specific type of application. This includes things like WPF and Windows Forms for

GUI applications, ASP.NET for web development, and Xamarin for iOS and Android development. Game

frameworks or engines like MonoGame and Unity could also be considered app models, though these are

not maintained directly by Microsoft.

This book, unfortunately, doesn’t cover these app models to any serious extent. There are two reasons for

this. Each app model is gigantic. You could write multiple books about each of these app models (and

indeed, there are many books out there). Trying to pack them all into this book would make it a 5000 page

book.

Second, the app models are, true to their name, specific to a certain type of application. This means that

the things that are important to somebody doing desktop development are going to be wildly different

from somebody doing web development. This book focuses on the C# language itself, and the aspects of

C# and .NET Versions 5

the .NET Platform that are useful to everybody. Once you’ve finished this book, you could then proceed on

to other books that focus on specific app models. (Those books all generally assume you know C#

anyway.)

We will cover how the .NET Platform is organized and how it functions in depth in Chapter 44.

C# and .NET Versions

C# has gone through quite a bit of evolution over its history. The first release was in 2002, and established

the bulk of the language features C# still has today.

A little over a year later, in 2003, C# 2.0 was released, adding in a lot of other big and powerful features,

most of which will get quite a bit of attention in this book (generics, nullable types, delegates, static

classes, etc.)

C# 3.0 expanded the language in a couple of very specific directions: LINQ and lambdas, both of which get

their own chapters in this book.

The next two releases were somewhat smaller. C# 4.0 added dynamic typing, as well as named and

optional method arguments. C# 5.0 added greatly expanded support for asynchronous programming.

In the C# 5 era, a new C# compiler was introduced: Roslyn. This compiler has a number of notable

features: it’s open source, it’s written in C# (written in the language it’s for), and it is available while your

program is running (so you can compile additional code dynamically). Something about its construction

also allows for people to more easily tweak and experiment with new features, which led to the features

added in C# 6.0 and 7.0.

C# 6.0 and 7.0 added a whole slew of little additions and tweaks across the language. While previous

updates to the language could usually be summed up in a single bullet point or two, and are given their

own chapters in this book, the new features in C# 6.0 and 7.0 are small and numerous. I try to point out

what these new features are throughout this book, so that you are aware of them.

Alongside the C# language itself, both Visual Studio and the Standard Library have both been evolving

and growing. This book has been updated to work with Visual Studio 2017 and C# 7.0 at the time of

publishing.

Future versions will, of course, arrive before long. Based on past experience, it’s a safe bet that everything

you learn in this book will still apply in future versions.

2
2 Installing Visual Studio

To make your own programs, people usually use a program called an Integrated Development Environment

(IDE). An IDE combines all of the tools you will commonly need to make software, including a special text

editor designed for editing source code files, a compiler, and other various tools to help you manage the

files in your project.

With C#, nearly everyone chooses to use some variation of Visual Studio, made by Microsoft. There are a

few different levels of Visual Studio, ranging from the free Community Edition, to the high-end Enterprise

Edition. In this chapter, I’ll guide you through the process of determining which one to choose.

As of the time of publication of this book, the latest version is the 2017 family. There will inevitably be

future releases, but the bulk of what’s described in this book should still largely apply in future versions.

While new features have been added over time, the fundamentals of Visual Studio have remained the

same for a very long time now.

There are three main flavors of Visual Studio 2017. Our first stop will be to look at the differences among

these, and I’ll point out one that is most likely your best choice, getting started. (It’s free, don’t worry!) I’ll

then tell you how to download Visual Studio and a little about the installation process. By the end of this

chapter, you’ll be up and running, ready to start doing some C# programming!

In a Nutshell
 To program in C#, we will need a program that allows us to write C# code and run it. That

program is Microsoft Visual Studio.

 A variety of versions of Visual Studio exists, including the free Community Edition, as well as

several higher tiers that offer additional features at a cost.

 You do not need to spend money to make C# programs.

 This chapter walks you through the various versions of Visual Studio to help you decide which

one to use, but as you are getting started, you should consider the free Visual Studio 2017

Community Edition.

Versions of Visual Studio 7

Versions of Visual Studio

Visual Studio 2017 comes in three editions: Community, Professional, and Enterprise. While I’m ultimately

going to recommend the Community Edition (it’s free, and it still allows you to make and sell commercial

applications with it) it is worth briefly considering the differences between the three.

From a raw feature standpoint, Community and Professional are essentially the same thing. Enterprise

comes with some nice added bonuses, but at a significantly higher cost. These extra features generally

are non-code-related, but instead deal with the surrounding issues, like team collaboration, testing,

performance analysis, etc. While nice, these extra features are probably not a great use of your money as

you’re learning, unless you work for a company or attend school at a place that will buy it for you.

Now that I’ve pushed you away from Enterprise as a beginner, the only remaining question is what to

actually use. And to answer that, we need to compare the Community Edition to the Professional Edition.

Community and Professional are essentially the same product with a different license. Microsoft wants to

make Visual Studio available to everybody, but they still want to be able to bring in money for their

efforts. With the current licensing model, they’ve managed to do that pretty well.

While Professional costs roughly $500, Community is free. But the license prevents certain people (the

ones with tons of money) from using it. While the following interpretation is not legally binding, the

general interpretation of the Community license is essentially this:

You can use it to make software, both commercially and non-commercially, as long as you don’t fit in one

of the following categories:

 You have 5+ Visual Studio developers in your company. (If you’re getting it for personal home use

or moonlighting projects, you don’t count the place you work for. You have 1 developer.)

 You have 250+ computers or users in your company.

 You have a gross income of $1,000,000.

If any of the above apply, you don’t qualify for the Community license, and you must buy Professional. But

then again, if any of those apply to you, you probably have the money to pay for Professional anyway.

There are a couple of exceptions to that:

 You’re a student or educator, using it solely for educational uses.

 You’re working solely on open source projects.

In short, for essentially everybody reading this book, you should be able to either use Community, or

you’re working somewhere that can afford to buy Professional or Enterprise for you.

This makes the decision simple: you will almost certainly want Visual Studio Community for now.

The Installation Process

Visual Studio can be downloaded from https://www.visualstudio.com/downloads. This will actually

install the Visual Studio Installer, which is a separate program from Visual Studio itself. (It sounds

complicated, but the Visual Studio Installer is a powerful and useful product in its own right.)

Once you get the installer downloaded and running, you will see a screen that looks similar to this:

https://www.visualstudio.com/downloads

8 Chapter 2 Installing Visual Studio

If instead of the above, you see a screen that lists Visual Studio Community, Professional, and Enterprise,

choose to install Visual Studio Community (or the option that is the one you need) and you will arrive at

this screen.

Visual Studio, with every single bit of functionality, is a lumbering behemoth of a product. Starting with

Visual Studio 2017, the product and the installer got a massive rewrite to allow you to install only the

components you actually care about. The screen that you see in the previous image is the part of the

installer that allows you to choose what components you want.

By default, nothing is checked, which would give you a very barebones Visual Studio. That’s probably not

what you want. Instead, we need to check the items that we want to include.

For this book, you will want to check the box for .NET desktop development on the Workloads tab.

Feel free to look through the rest of the things and check anything else you might want to play around

with at some point.

The installer contains three tabs at the top. The Individual components tab lets you pick and choose

individual items that you might want a la carte. The Workloads tab will pre-select groups of items on the

Individual components tab, to give you groups of items that are well suited for making specific types of

applications. The Language packs tab is for choosing languages for Visual Studio. English is included by

default, but check the box on other languages if you want to be able to use a different language like

French or Russian.

When you have the components you want (at a minimum, .NET desktop development) hit the Install

button and your selected components will be installed for you.

You may get an icon for Visual Studio on your desktop, but you’ll also always be able to find Visual Studio

in your Start Menu under “Visual Studio 2017.”

Also, if you ever want to modify the components that you’ve installed (either to remove unused ones or

add new ones) you can find “Visual Studio Installer” on your start menu as well, and simply re-run it to

modify your Visual Studio settings and add or remove components.

Visual Studio will ask you to sign in with a Microsoft account at some point. If you don’t have one, you can

follow their instructions to make one.

Starting in the next chapter and throughout the rest of this book, we’ll cover all sorts of useful tips and

tricks on using Visual Studio. Towards the end of this book, in Part 5, we’ll get into Visual Studio in a little

C# Programming on Mac and Linux 9

more depth. Once you get through the next couple of chapters, you can jump ahead to that part

whenever you’re ready for it. You don’t have to read through the book in order.

This book will use screenshots from Visual Studio 2017 Community. You may see some slight differences

depending on which version of Visual Studio you’re using and what add-ons you have active. But all of the

things we talk about in this book will be available in all editions.

C# Programming on Mac and Linux

If you are interested in doing C# programming on a Mac or on Linux, you’re still in luck.

Your first option is Visual Studio Code, which can be grabbed from https://code.visualstudio.com. Visual

Studio Code is a lightweight version of Visual Studio that runs on Windows, Mac, and Linux. Visual Studio

Code is missing a number of significant features that this book talks about, but it does support the basics

of editing and compiling your code.

Your second option is Xamarin Studio (http://xamarin.com/studio), which works on macOS. Xamarin

Studio is a powerful, full IDE similar to Visual Studio. In fact, Microsoft is releasing Visual Studio for Mac,

but it is essentially just Xamarin Studio rebranded. (Xamarin is owned by Microsoft, so they’re on the same

team.)

Try It Out!
Install Visual Studio. Take the time now to choose a version of Visual Studio and install it, so that

you’re ready to begin making awesome programs in the next chapter.

https://code.visualstudio.com/

3
3 Hello World: Your First C#

Program

In this chapter we’ll make our very first C# program. Our first program needs to be one that simply prints

out some variation of “Hello World!” or we’ll make the programming gods mad. It’s tradition to make your

first program print out a simple message like this whenever you learn a new language. It’s simple, yet still

gives us enough to see the basics of how the programming language works. Also, it gives us a chance to

compile and run a program, with very little chance for introducing bugs.

So that’s where we’ll start. We’ll create a new project and add in a single line to display "Hello World!" Once

we’ve got that, we’ll compile and run it, and you’ll have your very first program!

After that, we’ll take a minute and look at the code that you have written in more detail before moving on

to more difficult, but infinitely more awesome stuff in the future!

Creating a New Project

Let’s get started with our first C# program! Open up Visual Studio, which we installed in Chapter 2.

In a Nutshell
 Start a new C# Console Application by going to File > New > Project..., choosing the Console

Application template, and giving your project a name.

 Inside of the Main method, you can add code to write out stuff using a statement like

Console.WriteLine("Hello World!");

 Compile and run your program with F5 or Ctrl + F5.

 The template includes code that does the following:

 using directives make it easy to access chunks of previously written code in the

current program.

 The namespace block puts all of the contained code into a single collection.

 The code we actually write goes into the Program class in a method called Main,

which the C# compiler recognizes as the starting point for a program.

A Brief Tour of Visual Studio 11

When the program first opens, you will see the Start Page come up. To create a new project, select File >

New > Project... from the menu bar. (Note you can also search for the Console Application template on

the Start Page directly.)

Once you have done this, a dialog will appear asking you to specify a project type and a name for the

project. This dialog is shown below:

On the left side, you will see a few categories of templates to choose from. Depending on what version of

Visual Studio you have installed and what plugins and extensions you have, you may see different

categories here, but the one you’ll want to select is the Visual C# category, which will list all C#-related

templates that are installed.

Once that is selected, in the list in the top-center, find and select the Console Application (.NET

Framework) template. The Console Application template is the simplest template and it is exactly where

we want to start. For all of the stuff we will be doing in this book, this is the template to use.

As you finish up this book, if you want to start doing things like making programs with a graphical user

interface (GUI), game development, smart phone app development, or web-based development, you will

be able to put these other templates to good use.

At the bottom of the dialog, type in a name for your project. I’ve called mine “HelloWorld.” Your project

will be saved in a directory with this name. It doesn’t matter what you call a project, but a good name will

help you find it later. By default, Visual Studio tries to call your programs “ConsoleApplication1” or

“ConsoleApplication2.” If you don’t choose a good name, you won’t know what each of these do. By

default, projects are saved under your Documents directory (Documents/Visual Studio 2017/Projects/).

Finally, press the OK button to create your project!

A Brief Tour of Visual Studio

Once your project has loaded, it is worth a brief discussion of what you see before you. We’ll look in depth

at how Visual Studio works later on (Chapter 45) but it is worth a brief discussion right now.

12 Chapter 3 Hello World: Your First C# Program

By this point, you should be looking at a screen that looks something like this:

Depending on which version of Visual Studio you installed, you may see some slight differences, but it

should look pretty similar to this.

In the center should be some text that starts out with using System;. This is your program’s source code!

It is what you’ll be working on. We’ll discuss what it means, and how to modify it in a second. We’ll spend

most of our time in this window.

On the right side is the Solution Explorer. This shows you a big outline of all of the files contained in your

project, including the main one that we’ll be working with, called “Program.cs”. The *.cs file extension

means it is a text file that contains C# code. If you double-click on any item in the Solution Explorer, it will

open in the main editor window. The Solution Explorer is quite important, and we’ll use it frequently.

As you work on your project, other windows may pop up as they are needed. Each of these can be closed

by clicking on the ‘X’ in the upper right corner of the window.

If, by chance, you are missing a window that you feel you want, you can always open it by finding it on

either the View menu or View > Other Windows. For right now, if you have the main editor window open

with your Program.cs file in it, and the Solution Explorer, you should be good to go.

Building Blocks: Projects, Solutions, and Assemblies

As we get started, it is worth defining a few important terms that you’ll be seeing throughout this book. In

the world of C#, you’ll commonly see the words solution, project, and assembly, and it is worth taking the

time upfront to explain what they are, so that you aren’t lost.

These three words describe the code that you’re building in different ways. We’ll start with a project. A

project is simply a collection of source code and resource files that will all eventually get built into the

same executable program. A project also has additional information telling the compiler how to build it.

When compiled, a project becomes an assembly. In nearly all cases, a single project will become a single

assembly. An assembly shows up in the form of an EXE file or a DLL file. These two different extensions

represent two different types of assemblies, and are built from two different types of projects (chosen in

the project’s settings).

Modifying Your Project 13

A process assembly appears as an EXE file. It is a complete program, and has a starting point defined,

which the computer knows to run when you start up the EXE file. A library assembly appears as a DLL file.

A DLL file does not have a specific starting point defined. Instead, it contains code that other programs

can access and reuse on the fly.

Throughout this book, we’ll be primarily creating and working with projects that are set up to be process

assemblies that compile to EXE files, but you can configure any project to be built as a library assembly

(DLL) instead.

Finally, a solution will combine multiple projects together to accomplish a complete task or form a

complete program. Solutions will also contain information about how the different projects should be

connected to each other. While solutions can contain many projects, most simple programs (including

nearly everything we do in this book) will only need one. Even many large programs can get away with

only a single project.

Looking back at what we learned in the last section about the Solution Explorer, you’ll see that the

Solution Explorer is showing our entire solution as the very top item, which it labels “Solution ‘HelloWorld’

(1 project).” Immediately underneath that, we see the one project that our solution contains: “HelloWorld.”

Inside of the project are all of the settings and files that our project has, including the Program.cs file that

contains source code that we’ll soon start editing.

It’s important to keep the solution and project separated in your head. They both have the same name

and it can be a little confusing. Just remember the top node is the solution, and the one inside it is the

project.

Modifying Your Project

We’re now ready to make our program actually do something. In the center of your Visual Studio window,

you should see the main text editor, containing text that should look identical to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

In a minute we’ll discuss what all of that does, but for now let’s go ahead and make our first change—

adding something that will print out the message “Hello World!”

Right in the middle of that code, you’ll see three lines that say static void Main(string[] args) then a

starting curly brace (‘{‘) and a closing curly brace (‘}’). We want to add our new code right between the two

curly braces.

Here’s the line we want to add:

Console.WriteLine("Hello World!");

So now our program’s full code should look like this:

14 Chapter 3 Hello World: Your First C# Program

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

We’ve completed our first C# program! Easy, huh?

Compiling and Running Your Project

Your computer doesn’t magically understand what you’ve written. Instead, it understands special

instructions that are composed of 1’s and 0’s called binary. Fortunately for us, Visual Studio includes a

thing called a compiler. A compiler will take the C# code that we’ve written and turn it into binary that the

computer understands.

So our next step is to compile our code and run it. Visual Studio will make this easy for us.

To start this process, press F5 or choose Debug > Start Debugging from the menu.

There! Did you see it? Your program flashed on the screen for a split second! (Hang on... we’ll fix that in a

second. Stick with me for a moment.)

We just ran our program in debug mode, which means that if something bad happens while your

program is running, it won’t simply crash. Instead, Visual Studio will notice the problem, stop in the middle

of what’s going on, and show you the problem that you are having, allowing you to debug it. We’ll talk

more about how to actually debug your code in Chapter 48.

So there you have it! You’ve made a program, compiled it, and executed it!

If it doesn’t compile and execute, double check to make sure your code looks like the code above.

Help! My program is running, but disappearing before I can see it!
You likely just ran into this problem when you executed your program. You push F5 and the program

runs, a little black console window pops up for a split second before disappearing again, and you have no

clue what happened.

There’s a good reason for that. Your program ran out of things to do, so it finished and closed on its own.

(It thinks it’s so smart, closing on its own like that.)

Try It Out!
Hello World! It’s impossible to understate how important it is to actually do the stuff outlined in this

chapter. Simply reading text just doesn’t cut it. In future chapters, most of these Try It Out! sections

will contain extra things to do, beyond the things described in the actual body of the chapter. But for

right now, it is very important that you simply go through the process explained in this chapter. The

chapter itself is a Try It Out! So follow through this chapter, one step at a time, and make sure you’re

understanding the concepts that come up, at least at a basic level.

Compiling and Running Your Project 15

But we’re really going to want a way to make it so that doesn’t happen. After all, we’re left wondering if it

even did what we told it to. There are two solutions to this, each of which has its own strengths and

weaknesses.

Approach #1: When you run it without debugging, console programs like this will always pause before

closing. So one option is to run it without debugging. This option is called Release Mode. We’ll cover this in

a little more depth later on, but the bottom line is that your program runs in a streamlined mode which is

faster, but if something bad happens, your program will just die, without giving you a chance to debug it.

You can run in release mode by simply pressing Ctrl + F5 (instead of just F5). Do this now, and you’ll see

that it prints out your “Hello World!” message, plus another message that says “Press any key to

continue...” which does exactly what it says and waits for you before closing the program. You can also

find this under Debug > Start Without Debugging on the menu.

But there’s a distinct disadvantage to running in release mode. We’re no longer running in debug mode,

and so if something happens with your program while it is running, your application will crash and die.

(Hey, just like all of the other “cool” programs out there!) Which brings us to an alternative approach:

Approach #2: Put another line of code in that makes the program wait before closing the program. You

can do this by simply adding in the following line of code, right below where you put the

Console.WriteLine("Hello World!"); statement:

Console.ReadKey();

So your full code, if you use this approach, would look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.ReadKey();
 }
 }
}

Using this approach, there is one more line of code that you have to add to your program (in fact, every

console application you make), which can be a little annoying. But at least with this approach, you can still

run your program in debug mode, which you will soon discover is a really nice feature.

Fortunately, this is only going to be a problem with console apps. That’s what we’ll be doing in this book,

but before long, you’ll probably be making windows apps, games, or awesome C#-based websites, and

this problem will go away on its own. They work in a different way, and this won’t be an issue there.

Try It Out!
See Your Program Twice. I’ve described two approaches for actually seeing your program execute.

Take a moment and try out each approach. This will give you an idea of how these two different

approaches work. Also, try combining the two and see what you get. Can you figure out why you need

to push a key twice to end the program?

16 Chapter 3 Hello World: Your First C# Program

A Closer Look at Your Program

Now that we’ve got our program running, let’s take a minute and look at each line of code in the program

we’ve made. I’ll explain what each one does so that you’ll have a basic understanding of everything in your

simple Hello World program.

Using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

The first few lines of your program all start with the keyword using. A keyword is simply a reserved word,

or a magic word that is a built-in part of the C# programming language. It has special meaning to the C#

compiler, which it uses to do something special. The using keyword tells the compiler that there is a

whole other pile of code that someone made that we want to be able to access. (This is actually a bit of a

simplification, and we’ll sort out the details in Chapter 27.)

So when you see a statement like using System; you know that there is a whole pile of code out there

named System that our code wants to use. Without this line, the C# compiler won’t know where to find

things and it won’t be able to run your program. You can see that there are five using directives in your

little program that are added by default. We can leave these exactly the way they are for the near future.

Namespaces, Classes, and Methods
Below the using directives, you’ll see a collection of curly braces (‘{‘ and ‘}’) and you’ll see the keywords

namespace, class, and in the middle, the word Main. Namespaces, classes, and methods (which Main is

an example of) are ways of grouping related code together at various levels. Namespaces are the largest

grouping, classes are smaller, and methods are the smallest. We’ll discuss each of these in great depth as

we go through this book, but it is worth a brief introduction now. We’ll start at the smallest and work our

way up.

Methods are a way of consolidating a single task together in a reusable block of code. In other

programming languages, methods are sometimes called functions, procedures, or subroutines. We’ll get

into a lot of detail about how to make and use methods as we go, but the bulk of our discussion about

methods will be in Chapter 15, with some extra details in Chapter 28.

Right in the middle of the generated code, you’ll see the following:

static void Main(string[] args)
{
}

This is a method, which happens to have the name Main. I won’t get into the details about what

everything else on that line does yet, but I want to point out that this particular setup for a method makes

it so that C# knows it can be used as the starting point for your program. Since this is where our program

starts, the computer will run any code we put in here. For the next few chapters, everything we do will be

right in here.

You’ll also notice that there are quite a few curly braces in our code. Curly braces mark the start and end

of code blocks. Every starting curly brace (‘{‘) will have a matching ending curly brace (‘}’) later on. In this

particular part, the curly braces mark the start and end of the Main method. As we discuss classes and

namespaces, you’ll see that they also use curly braces to mark the points where they begin and end. From

looking at the code, you can probably already see that these code blocks can contain other code blocks to

form a hierarchy.

Whitespace Doesn’t Matter 17

When one thing is contained in another, it is said to be a member of it. So the Program class is a member

of the namespace, and the Main method is a member of the Program class.

Classes are a way of grouping together a set of data and methods that operate on that data into a single

reusable package. Classes are the fundamental building block of object-oriented programming. We’ll get

into this in great detail in Part 3, especially Chapters 17 and 18.

In the generated code, you can see the beginning of the class, marked with:

class Program
{

And later on, after the Main method it contains, you’ll see a matching closing curly brace:

}

Program is simply a name for the class. It could have been just about anything else. The fact that the

Main method is contained in the Program class indicates that it belongs to the Program class.

Namespaces are the highest level grouping of code. Many smaller programs may only have a single

namespace, while larger ones often divide the code into several namespaces based on the feature or

component that the code is used in. We’ll spend a little extra time detailing namespaces and using

directives in Chapter 27.

Looking at the generated code, you’ll see that our Program class is contained in a namespace called

“HelloWorld”:

namespace HelloWorld
{
 ...
}

Once again, the fact that the Program class appears within the HelloWorld namespace means that it

belongs to that namespace, or is a member of it.

Whitespace Doesn’t Matter

In C#, whitespace such as spaces, new lines, and tabs don’t matter to the C# compiler. This means that

technically, you could write any program on a single line! But don’t do that. That would be a bad idea.

Instead, you should use whitespace to help make your code more readable, both for other people who

may look at your code, or even yourself a few weeks from now, when you’ve forgotten what exactly your

code was supposed to do.

I’ll leave the decision about where to put whitespace up to you, but as an example, compare the following

pieces of code that do the same thing:

static void Main(string
[] args) { Console
.WriteLine (
 "Hello World!");}

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

For the sake of clarity, I’ll use a style like the bottom version throughout this book.

18 Chapter 3 Hello World: Your First C# Program

Semicolons

You may have noticed that the lines of code we added all ended with semicolons (‘;’).

This is how C# knows it has reached the end of a statement. A statement is a single step or instruction that

does something. We’ll be using semicolons all over the place as we write C# code.

This chapter may have seemed long, and we haven’t even accomplished very much. That’s OK, though. We

have to start somewhere, and this is where everyone starts. We have now made our first C# program,

compiled it, and executed it! And just as important, we now have a basic understanding of the starter

code that was generated for us. This really gets us off on the right foot. We’re off to a great start, but

there’s so much more to learn!

Try It Out!
Evil Computers. In the influential movie 2001: A Space Odyssey, an evil computer named HAL 9000

takes over a Jupiter-bound spaceship, locking Dave, the movie’s hero, out in space. As Dave tries to

get back in, to the ship, he tells HAL to open the pod bay doors. HAL’s response is "I’m sorry, Dave. I’m

afraid I can’t do that." Since we know not all computers are friendly and happy to help people, modify

your Hello World program to say HAL 9000’s famous words, instead of "Hello World!"

4
4 Comments

In this short chapter we’ll cover the basics of comments. We’ll look at what they are, why you should use

them, and how to do them. Many programmers (even many C# books) de-emphasize comments, or

completely ignore them. I’ve decided to put them front and center, right at the beginning of the book—

they really are that important.

What is a Comment?

At its core, a comment is text that is put somewhere for a human to read. Comments are ignored entirely

by the computer.

Why Should I Use Comments?

I mentioned in the last chapter that whitespace should be used to help make your code more readable.

Writing readable and understandable code is a running theme you’ll see in this book. Writing code is

actually far easier than reading it, or trying understanding what it does. And believe it or not, you’ll

actually spend far more time reading code than writing it. You will want to do whatever you can to make

your code easier to read. Comments will go a very long way towards making your code more readable

and understandable.

You should use comments to describe what you are doing so that when you come back to a piece of code

that you wrote after several months (or even just days) you’ll know what you were doing.

Writing comments—wait, let me clarify—writing good comments is a key part of writing good code.

Comments can be used to explain tricky sections of code, or explain what things are supposed to do. They

Quick Start
 Comments are a way for you to add text for other people (and yourself) to read. Computers

ignore comments entirely.

 Comments are made by putting two slashes (//) in front of the text.

 Multi-line comments can also be made by surrounding it with asterisks and slashes, like this:

/* this is a comment */

20 Chapter 4 Comments

are a primary way for a programmer to communicate with another programmer who is looking at their

code. The other programmer may even be on the other side of the world and working for a different

company five years later!

Comments can explain what you are doing, as well as why you are doing it. This helps other

programmers, including yourself, know what was going on in your mind at the time.

In fact, even if you know you’re the only person who will ever see your code, you should still put

comments in it. Do you remember what you ate for lunch a week ago today? Neither do I. Do you really

think that you’ll remember what your code was supposed to do a week after you write it?

Writing comments makes it so that you can quickly understand and remember what the code does, how it

does it, why it does it, and you can even document why you did it one way and not another.

How to Make Comments in C#

There are three basic ways to make comments in C#. For now, we’ll only really consider two of them,

because the third applies only to things that we haven’t looked at yet. We’ll look at the third form of

making comments in Chapter 15.

The first way to create a comment is to start a line with two slashes: //. Anything on the line following the

two slashes will be ignored by the computer. In Visual Studio the comments change color—green, by

default—to indicate that the rest of the line is a comment.

Below is an example of a comment:

// This is a comment, where I can describe what happens next...
Console.WriteLine("Hello World!");

Using this same thing, you can also start a comment at the end of a line of code, which will make it so the

text after the slashes are ignored:

Console.WriteLine("Hello World!"); // This is also a comment.

A second method for creating comments is to use the slash and asterisk combined, surrounding the

comment, like this:

Console.WriteLine("Hi!"); /* This is a comment that ends here... */

This can be used to make multi-line comments like this:

/* This is a multi-line comment.
 It spans multiple lines.
 Isn't it neat? */

Of course, you can do multi-line comments with the two slashes as well, it just has to be done like this:

// This is a multi-line comment.
// It spans multiple lines.
// Isn't it neat?

In fact, most C# programmers will probably encourage you to use the single line comment version instead

of the /* */ version, though it is up to you.

The third method for creating comments is called XML Documentation Comments, which we’ll discuss

later, because they’re used for things that we haven’t discussed yet. For more information about XML

Documentation Comments, see Chapter 15.

How to Make Good Comments 21

How to Make Good Comments

Commenting your code is easy; making good comments is a little trickier. I want to take some time and

describe some basic principles to help you make comments that will be more effective.

My first rule for making good comments is to write the comments for a particular chunk of code as soon

as you’ve got the piece more or less complete. A few days or a weekend away from the code and you may

no longer really remember what you were doing with it. (Trust me, it happens!)

Second, write comments that add value to the code. Here’s an example of a bad comment:

// Uses Console.WriteLine to print "Hello World!"
Console.WriteLine("Hello World!");

The code itself already says all of that. You might as well not even add it. Here’s a better version:

// Printing "Hello World!" is a very common first program to make.
Console.WriteLine("Hello World!");

This helps to explain why we did this instead of something else.

Third, you don’t need a comment for every single line of code, but it is helpful to have one for every

section of related code. It’s possible to have too many comments, but the dangers of over-commenting

code matter a whole lot less than the dangers of under-commented (or completely uncommented code).

When you write comments, take the time put in anything that you or another programmer may want to

know if they come back and look at the code later. This may include a human-readable description of

what is happening, it may include describing the general method (or algorithm) you’re using to accomplish

a particular task, or it may explain why you’re doing something. You may also find times where it will be

useful to include why you aren’t using a different approach, or to warn another programmer (or yourself!)

that a particular chunk of code is tricky, and you shouldn’t mess with it unless you really know what you’re

doing.

Having said all of this, don’t take it to an extreme. Good comments don’t make up for sloppy, ugly, or hard

to read code. Meanwhile nice, clean, understandable code reduces the times that you need comments at

all. (The code is the authority on what’s happening, not the comments, after all.) Make the code as

readable as possible first, then add just enough comments to fill in the gaps and paint the bigger picture.

When used appropriately, comments can be a programmer’s best friend.

Try It Out!
Comment ALL the things! While it’s overkill, in the name of putting together everything we’ve

learned so far, go back to your Hello World program from the last chapter and add in comments for

each part of the code, describing what each piece is for. This will be a good review of what the pieces

of that simple program do, as well as give you a chance to play around with some comments. Try out

both ways of making comments (// and /* */) to see what you like.

Part 2
The Basics

With a basic understanding of how to get started behind us, we’re ready to dig in and look at the

fundamentals of programming in C#.

It is in this part that our adventure really gets underway. We’ll start learning about the world of C#

programming, and learn about the key tools that we’ll use to get things done.

In this section, we cover aspects of C# programming that are called “procedural programming.” This

means we’ll be learning how to tell the computer, step-by-step, how to get things done.

We’ll look at how to:

 Store data in variables (Chapter 5).

 Understand the type system (Chapter 6).

 Do basic math (Chapters 7 and 9).

 Get input from the user (Chapter 8).

 Make decisions (Chapter 10).

 Repeat things multiple times (Chapter 12 and 13).

 Create enumerations (Chapter 14).

 Package related code together in a way that allows you to reuse it (Chapter 15).

5
5 Variables

In this chapter, we’re going to dig straight into one of the most important parts of programming in C#.

We’re going to discuss variables, which are how we keep track of information in our programs. We’ll look

at how you create them, place different values in them, and use the value that is currently in a variable.

What is a Variable?

A key part of any program you make, regardless of the programming language, is the ability to store

information in memory while the program is running. For example, you might want to store a player’s

score or a person’s name, so that you can refer back to it later or modify it.

You may remember discussing variables in math classes, but these are a little different.

In math, we talk about variables being an “unknown quantity” that you are supposed to

solve for. Variables in math are a specific value that you just need to figure out.

In programming, a variable is a place in memory where you can store information. It’s

like a little box or bucket to put stuff in. At any point in time, you can look up the

contents of the variable or rewrite the contents of the variable with new stuff. When

you do this, the variable itself doesn’t need to change, just the contents in the box.

Each variable has a name and a type. The name is what you’ll use in your program when you want to read

its contents or put new stuff in it.

In a Nutshell
 You can think of variables as boxes that store information.

 A variable has a name, a type, and a value that is contained in it.

 You declare (create) a variable by stating the type and name: int number;

 You can assign values to a variable with the assignment operator (’=’): number = 14;

 When you declare a variable, you can initialize it as well: int number = 14;

 You can retrieve the value of a variable simply by using the variable’s name in your code:

Console.WriteLine(number);

 This chapter also gives guidelines for good variable names.

26 Chapter 5 Variables

The variable’s type indicates what kind of information you can put in it. C# has a large assortment of types

that you can use, including a variety of integer types, floating point (real valued) types, characters, strings

(text), Boolean (true/false), and a whole lot more.

In C#, types are a really big deal. Throughout this book, we’ll spend a lot of time learning how to work with

different types, converting from one type to another, and ultimately building our own types from scratch.

In the next chapter, we’ll get into types in great detail. For now though, let’s look at the basics of creating a

variable.

Creating Variables

Let’s make our first variable. The process of creating a variable is called declaring a variable.

Let’s start by going to Visual Studio and creating a brand new console project, just like we did with the

Hello World project, back in Chapter 3. Inside of the Main method, add the following single line of code:

int score;

So your code should look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Variables
{
 class Program
 {
 static void Main(string[] args)
 {
 int score;
 }
 }
}

Congratulations! You’ve made your first variable! When you declare a variable, the computer knows that it

will need to reserve a place in memory for this variable.

As you can see, when you declare a variable, you need to indicate the variable’s name

and type. This one line has both of those parts on it. The first part you see here is int.

This is the variable’s type. We’ll look at the different types that are available in a

minute, but for now all we need to know is that the int type is for storing integers. (In

case you don’t remember from math class, integers are whole numbers and their

negatives, so 0, 1, 2, 3, 4, ..., and -1, -2, -3, -4,) Because we’ve made a variable that

stores integers, we know we could put the number 100 in it, or -75946. But we could not store the number

1.3483 (it’s not an integer), and we also could not store a word like “hamburger” (it’s not an integer either).

The variable’s type determines what kind of stuff we can put in it.

The second part of declaring a variable is giving it a name. It is important to remember that a variable’s

name is meant for humans. The computer doesn’t care what it is called. (In fact, once you hand it off to

the computer, it changes the name to a memory location anyway.) So you want to choose a name that

makes sense to humans, and accurately describes what you’re putting in it. In math, we often call

variables by a single letter (like x), but in programming we can be more precise and call it something like

score instead.

Assigning Values to Variables 27

As always, C# statements end with a ‘;’, telling the computer that it has reached the end of the statement.

After this line, we have made a new variable with the name score and a type of int which we can now use!

Assigning Values to Variables

The next thing we want to do is put a value in the variable. This is called assigning a value to the variable,

and it is done using the assignment operator: “=”. The line of code below assigns the value 0 to the score

variable we just created:

score = 0;

You can add this line of code right below the previous line we added.

This use of the equals sign is different than how it is used in math. In math, “=” indicates

that two things are the same, even though they may be written in different formats. In

C# and many other programming languages, it means we’re going to take the stuff on

the right side of the equals sign and place it in the variable that is named on the left.

You can assign any integer value to score, and you can assign different values over time:

score = 4;
score = 11;
score = -1564;

You can assign a value to a variable whenever you want, as long as it is after the variable has been

declared. Of course, we haven’t learned very powerful tools for programming yet, so “whenever you want”

doesn’t mean much yet. (We’ll get there soon, don’t worry!)

When we create a variable, we often want to give it a value right away. (The C# compiler is not a big fan of

you trying to see what’s inside an empty variable box.) While you can declare a variable and assign it a

value in separate steps, it is also possible to do both of them at the same time:

int theMeaningOfLife = 42;

This line creates a variable called theMeaningOfLife with the type int, and gives it a starting value of 42.

Retrieving the Contents of a Variable

As we just saw, we can use the assignment operator (‘=’) to put values into a variable. You can also see and

use the contents of a variable, simply by using the variable’s name. When the computer is running your

code and it encounters a variable name, it will go to the variable, look up the contents inside, and use that

value in its place.

For example, int the code below, the computer will pull the number out of the number variable and write

3 to the console window:

int number = 3;
Console.WriteLine(number); // Console.WriteLine prints lots of things, not just text.

When you access a variable, here’s what the computer does:

1. Locates the variable that you asked for in memory.

2. Looks in the contents of the variable to see what value it contains.

3. Makes a copy of that value to use where it is needed.

The fact that it grabs a copy of the variable is important. For one, it means the variable keeps the value it

had. Reading from a variable doesn’t change the value of the variable. Two, whatever you do with the

28 Chapter 5 Variables

copy won’t affect the original. (We’ll learn more about how this works in Chapter 16, when we learn about

value and reference types.)

For example, here is some code that creates two variables and assigns the value of one to the other:

int a = 5;
int b = 2;

b = a;
a = -3;

With what you’ve learned so far about variables, what value will a and b have after this code runs?

Right at the beginning of those four lines, we create two variables, one named a, and one named b. Both

can store integers, because we’re using the int type. We also assign the value 5 to a, and 2 to b. After the

first two lines, this is what we’re looking at:

We then use the assignment operator to take the value inside of a and copy it to b:

Finally, on the last line we assign a completely new value to a:

If we printed out a and b, we would see that a is -3 and b is 5 by the time this code is finished.

How Data is Stored

Before we move into a discussion about the C# type system, we need to understand a little about how

information is stored on a computer. This is a key part of what drives the need for types in the first place.

Try It Out!
Playing with Variables. Take the little piece of code above and make a program out of it. Follow the

same steps you did in Chapter 3 when we made the Hello World program, but instead of adding code

to print out “Hello World!”, add the lines above. Use Console.WriteLine, like we did before and print

out the contents of the two variables. Before you run the code, think about what you expect to be

printed out for the a and b variables. Go ahead and run the program. Is it what you expected?

Multiple Declarations and Assignments 29

It is important to remember that computers only work with 1’s and 0’s. (Technically, they’re tiny electric

pulses or magnetic fields that can be in one of two states which we label 1 and 0.)

A single 1 or 0 is called a bit, and a grouping of eight of them is called a byte. If we do the math, this means

that a single byte can store up to a total of 256 different states.

To get more states than this, we need to put multiple bytes together. For instance, two bytes can store

65,536 possible states. Four bytes can store over 4 billion states, and eight bytes combined can store over

18 quintillion possible states.

But we need a way to take all of these states and make sense out of them. This is what the type system is

for. It defines how many bytes we need to store different things, and how those bits and bytes will be

interpreted by the computer, and ultimately, the user.

For example, let’s say we want to store letters. Modern systems tend to use two bytes to store letters.

Programmers have assigned each letter a specific pattern of bits. For instance, we assign the capital letter

‘A’ to the bit pattern 00000000 01000001. ‘B’ is one up from that: 00000000 01000010. Because we’re using

two bytes, we have 65,536 different possibilities. That’s enough to store every symbol in every language

that is currently spoken on Earth, including many ancient languages, and still have room to spare.

For each different type of data, we interpret the underlying bits and bytes in a different way. The int type

that we were using earlier works like this. The int type uses four bytes. For brevity, in this discussion, I’m

leaving off the first three bytes, which contain all zeros for the small sample numbers we’re using here.

The value 0 is represented with the bit pattern 00000000. The value 1 is represented with the bit pattern

00000001. 2 is represented with 00000010. 3 is 00000011. This is basically counting in a base two

numbering system, or a binary numbering system.

Other types will use their bits and bytes in other ways. We won’t get into the specifics about how they all

work, as that’s really beyond the scope of this book. I’ll just point out that the way C# interprets bits and

bytes uses the same standard representations as nearly every other language and computer.

Multiple Declarations and Assignments

Our earlier code for creating a variable and for assigning a value to a variable just did one per line. But

you can declare multiple variables at the same time using code like this:

int a, b, c;

If you do this, all variables must be of the same type (int in this case). We’ll talk about types in more depth

in Chapter 6.

You can also assign the same value to multiple different variables all at the same time:

a = b = c = 10;

Most cases will probably lead you to make and assign values individually, rather than simultaneously, but

it is worth knowing that this is an option.

Good Variable Names

Before we go on, let’s talk about how to choose good names for your variables. Not everybody agrees on

what makes a variable name good. But I’m going to give you the rules I follow, which you’ll discover are

pretty typical, and not too far off from what most experienced programmers do.

The purpose of a variable name is to give a human-readable label for the variable. Anyone who stumbles

across the variable name should be able to instantly know what information the variable contains.

30 Chapter 5 Variables

It’s easy to write code. It’s hard to write code that you can actually go back and read and understand. Like

comments, good variable names are an absolutely critical part of writing readable code, and it’s not

something that can be ignored. Here are my rules:

Rule #1: Meet C#’s Requirements. C# has a few requirements for variable names. All variable names

have to start with a letter (a-z or A-Z) or the underscore (‘_’) character, and can then contain any number

of other letters, numbers, or the underscore character. You also cannot name a variable the same thing

as one of the reserved keywords that C# defines. These keywords are highlighted in blue in Visual Studio,

but includes things like namespace, int, and public. Your code won’t compile if you don’t follow this rule.

Rule #2: Variable names should describe the stuff you intend on putting in it. If you are putting a

player’s score in it, call it score, or playerScore, or even plrscr if you have to, but don’t call it jambalaya,

p, or monkey. But speaking of plrscr...

Rule #3: Don’t abbreviate or remove letters. Looking at the example of plrscr, you can tell that it

resembles “player score.” But if you didn’t already know, you’d have to sit there and try to fill in the

missing letters. Is it “plural scar,” or “plastic scrabble”? Nope, it is “player score.” You just have to sit there

and study it. The one exception to this rule is common abbreviations or acronyms. HTML is fine.

Rule #4: A good name will usually be kind of long. In math, we usually use single letters for variable

names. In programming, you usually need more than that to accurately describe what you’re trying to do.

In most cases, you’ll probably have at least three letters. Often, it is 8 to 16. Don’t be afraid if it gets longer

than that. It’s better to be descriptive than to “save letters.”

Rule #5: If your variables end with a number, you probably need a better name. If you’ve got count1

and count2, there’s probably a better name for them. (Or perhaps an array, which we’ll talk about later.)

Rule #6: “data”, “text”, “number”, and “item” are usually not descriptive enough. For some reason,

people seem to fall back to these all the time. They’re OK, but they’re just not very descriptive. It’s best to

come up with something more precise in any situation where you can.

Rule #7: Make the words of the variable name stand out from each other. This is so it is easier to

read a variable name that is composed of multiple words. playerScore (with a capital ‘S’) and

player_score are both more readable than playerscore. My personal preference is the first, but both

work.

Answers: (1) name, type, value. (2) False. (3) 1. (4) answer, value1, delete_me, PI.

Try It Out!
Variables Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. Name the three things all variables have.

2. True/False. You can use a variable before it is declared.

3. How many times must a variable be declared?

4. Out of the following, which are legal variable names? answer, 1stValue, value1, $message,

delete-me, delete_me, PI.

This is a preview. These pages have been

excluded from the preview.

21
21 Structs

A few chapters ago we introduced classes. These are complex reference types that you can define and

build from the ground up. C# has a feature call structs or structures which look very similar to classes

organizationally, but they are value types instead of reference types.

In this chapter, we’ll take a look at how to create a struct, as well as discuss how to decide if you need a

struct or a class. We’ll also discuss something that may throw you for a loop: all of the built-in types like

bool, int, and double, are actually all aliases for structures (or a class in the case of the string type).

Creating a Struct

Creating a struct is very similar to creating a class. The following code defines a simple struct, and an

identical class that does the same thing:

struct TimeStruct
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;

In a Nutshell
 A struct or structure is similar to a class in terms of the way it is organized, but a struct is a

value type, not a reference type.

 Structs should be used to store compound data (composed of more than one part) that does

not involve a lot of complicated methods and behaviors.

 All of the simple types are structs.

 The primitive types are all aliases for certain pre-defined structs and classes.

Structs vs. Classes 139

 }
}

class TimeClass
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;
 }
}

You can see that the two are very similar—in fact the same code is used in both, with the single solitary

difference being the struct keyword instead of the class keyword.

Structs vs. Classes

Since the two are so similar in appearance, you’re probably wondering how the two are different.

The answer to this question is simple: structs are value types, while classes are reference types. If you

didn’t fully grasp that concept back when we discussed it in Chapter 16, it is probably worth going back

and taking a second look.

While this is a single difference in theory, this one change makes a world of difference. For example, a

struct uses value semantics instead of reference semantics. When you assign the value of a struct from

one variable to another, the entire struct is copied. The same thing applies for passing one to a method as

a parameter, and returning one from a method.

Let’s say we’re using the struct version of the TimeStruct we just saw, and did this:

public static void Main(string[] args)
{
 TimeStruct time = new TimeStruct();
 time.Seconds = 10;

 UpdateTime(time);
}

public static void UpdateTime(TimeStruct time)
{
 time.Seconds++;
}

In the UpdateTime method, we’ve received a copy of the TimeStruct. We can modify it if we want, but

this hasn’t changed the original version, back in the Main method. We’ve modified a copy, and the original

still has a value of 10 for seconds.

Had we used TimeClass instead, handing it off to a method copies the reference, but that copied

reference still points the same actual object. The change in the UpdateTime method would have affected

the time variable back in the Main method.

Like I said back when we were looking at reference types, this can be a good thing or a bad thing,

depending on what you’re trying to do, but the important thing is that you are aware of it.

140 Chapter 21 Structs

Interestingly, while we get a copy of a value type as we move it around, it doesn’t necessarily mean we’ve

completely duplicated everything it is keeping track of. Let’s say you had a struct that contained within it a

reference type, like an array, as shown below:

struct Wrapper
{
 public int[] numbers;
}

And then we used it like this:

public static void Main(string[] args)
{
 Wrapper wrapper = new Wrapper();
 wrapper.numbers = new int[3] { 10, 20, 30 };
 UpdateArray(wrapper);
}

public void UpdateArray(Wrapper wrapper)
{
 wrapper.numbers[1] = 200;
}

We get a copy of the Wrapper type, but for our numbers instance variable, that’s a copy of the reference.

The two are still pointing to the same actual array on the heap.

Tricky little things like this are why if you don’t understand value and reference types, you’re going to get

bit by them. If you’re still fuzzy on the differences, it’s worth a second reading of Chapter 16.

There are other differences that arise because of the value/reference type difference:

 Structs can’t be assigned a value of null, since null indicates a reference to nothing.

 Because structs are value types, they’ll be placed on the stack when they can. This could mean

faster performance because they’re easier to get to, but if you’re passing them around or

reassigning them a lot, the time it takes to copy them could slow things down.

Another big difference between structs and classes is that in a struct, you can’t define your own

parameterless constructor. For both classes and structs, if you don’t define any constructors at all, one

still exists: a default parameterless constructor. This constructor has no parameters, and is the simplest

way to create new objects of a given type, assuming there’s no special setup logic required.

With classes, you can create your own parameterless constructor, which then allows you to replace the

default one with your own custom logic. This cannot be done with structs. The default parameterless

constructor creates new objects where everything is zeroed out. All numbers within the struct start at 0,

all bools start at false, all references start at null, etc. While you can create other constructors in your

struct, you cannot create a parameterless one to replace this default one.

Deciding Between a Struct and a Class

Despite the similarities in appearance, structs and classes are made for entirely different purposes. When

you create a new type, which one do you choose? Here are some things to think about as you decide.

For starters, do you have a particular need to have reference or value semantics? Since this is the primary

difference between the two, if you’ve got a good reason to want one over the other, your decision is

basically already made.

If your type is not much more than a compound collection of a small handful of primitives, a struct might

be the way to go. For instance, if you want something to keep track of a person’s blood pressure, which

Prefer Immutable Value Types 141

consists of two integers (systolic and diastolic pressures) a struct might be a good choice. On the other

hand, if you think you’re going to have a lot of methods (or events or delegates, which we’ll talk about in

Chapters 32 and 33) then you probably just want a class.

Also, structs don’t support inheritance which is something we’ll talk about in Chapter 22, so if that is

something you may need, then go with classes.

In practice, classes are far more common, and probably rightly so, but it is important to remember that if

you choose one way or the other, and then decide to change it later, it will have a huge ripple effect

throughout any code that uses it. Methods will depend on reference or value semantics, and to change

from one to the other means a lot of other potential changes. It’s a decision you want to make

consciously, rather than just always defaulting to one or the other.

Prefer Immutable Value Types

In programming, we often talk about types that are immutable, which means that once you’ve set them

up, you can no longer modify them. (As opposed to mutable types, which you can modify parts of its data

on the fly.) Instead, you would create a new copy that is similar, but with the changes you want to make.

All of the built-in types (including the string type, which is a reference type) are immutable.

There are definite benefits to making both value and reference types immutable, but especially so with

structs. This is because we think of value types like structs as a cohesive specific value. Because it has

value semantics (copies of the whole thing are made, rather than just making a second reference to the

same actual bytes in memory) we end up duplicating value types all over the place.

If we aren’t careful, with a mutable, changeable value type, we might think we’re modifying the original,

but are instead modifying the original.

For example, what will the following code output?

struct S
{
 public int Value { get; set; }
}

class Program
{
 static void Main(string[] args)
 {
 S[] values = new S[10]; // New array of structs with default values is created here.
 S item = values[0]; // Danger! Copy is made here.
 item.Value++; // Copy is modified here.
 Console.WriteLine(values[0].Value); // Original, unmodified value is printed here.
 }
}

It actually prints out 0. This might come as a surprise. This is because the line that says S item =

values[0]; produces a copy for the assignment. So when you do item.Value++, you are modifying the

copy, not the original. (This would not be true if S were a class instead of a struct.)

If we make S immutable so you can’t modify its Value property at all, then the only way to produce a new

version with the correctly incremented value would be to create a new S object, populated with the

correct value at construction time. (You would want to define a constructor that allows you to specify

value at creation time if you do this.)

At this point, that item.Value++ line would have to become item = new S(item.Value + 1);, and the error

becomes much more obvious to spot.

142 Chapter 21 Structs

Making things in general immutable has many benefits, but for structs, you should definitely have a

preference for making them immutable. (Sometimes the overhead performance cost associated with

creating lots of objects will supersede the usefulness of immutable types, for example.)

The Built-In Types are Aliases

Back in Chapter 6, we took a look at all of the primitive or built-in types that C# has. This includes things

like int, float, bool, and string. In Chapter 16, we looked at value types vs. reference types, and we

discovered that these primitive types are value types, except for string, which is a reference type.

In fact, more than just being value types, they are actually structs! This means that everything we’ve been

learning about structs also applies to these built-in types.

Even more, all of the primitive types are aliases for other structs (or class, in the case of the string type).

We’ve been working with things like the int type. But behind the scenes the C# compiler is simply

changing this over to a struct that is defined in the same kind of way that we’ve seen here. In this case, it

is the Int32 struct (System.Int32).

So while we’ve been writing code that looks like this:

int x = 0;

We could have also used this:

Int32 x = new Int32();
Int32 y = 0; // Or combined.
int z = new Int32(); // Or combined another way. It's all the same thing.
int w = new int(); // Yet another way...

The following table identifies the aliases for each of the built-in types:

Primitive Type Alias For:

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

With only a few of exceptions, the “real” struct name is the same as the keyword version, just with

different capitalization. Keywords in C# are all lowercase by convention, but nearly everybody will

capitalize type names, which explains that difference.

The Built-In Types are Aliases 143

You’ll also see that instead of short, int, and long, the structs use Int followed by the number of bits they

use. It explicitly states exactly how many bits are in each type, which gives some clarity.

Additionally, float becomes Single rather than Float. Technically, float, double, and decimal are all

floating point types. But double has twice the bits as float, so the term “single” is a more specific (and

therefore technically more accurate) name for it. The C# language designers stuck with float because

that’s the keyword that is used for this data type in many other languages.

Answers: (1) Value types. (2) False. (3) False. (4) False. (5) False. string and object are reference types.

Try It Out!
Structs Quiz. Answer the following questions to check your understanding. When you’re done, check

your answers against the ones below. If you missed something, go back and review the section that

talks about it.

1. Are structs value types or reference types?

2. True/False. It is easy to change classes to structs, or structs to classes.

3. True/False. Structs are always immutable.

4. True/False. Classes are never immutable.

5. True/False. All primitive/built-in types are structs.

This is a preview. These pages have been

excluded from the preview.

37
37 Lambda Expressions

The Motivation for Lambda Expressions

Lambda expressions are a relatively simple concept. The trick to understanding lambda expressions is in

understanding what they’re actually good for. So that’s where we’re going to start our discussion.

For this discussion, let’s say you had the following list of numbers:

// Collection initializer syntax (see Chapter 25).
List<int> numbers = new List<int>(){ 1, 7, 4, 2, 5, 3, 9, 8, 6 };

Let’s also say that somewhere in your code, you want to filter out some of them. Perhaps you want only

even numbers. How do you do that?

The Basic Approach
Knowing what we learned way back in some of the early chapters about methods and looping, perhaps

we could create something like this:

In a Nutshell
 Lambda expressions are methods that appear “in line” and do not have a name.

 Lambda expressions have different syntax than normal methods, which for simple lambda

expressions makes it very readable. The expression: x => x < 5 is the equivalent of the

method bool AMethod(int x) { return x < 5; }.

 Multiple parameters can be used: (x, y) => x * x + y * y

 As can zero parameters: () => Console.WriteLine("Hello World!")

 The C# compiler can typically infer the types of the variables in use, but if not, you can

explicitly provide those types: (int x) => x < 5.

 If you want more than one expression, you can use a statement lambda instead, which has

syntax that looks more like a method: x => { bool lessThan5 = x < 5; return lessThan5; }

 Lambda expressions can use variables that are in scope at the place where they are defined.

 Expression syntax can be used to define normal, named methods, properties, indexers, and

operators as well: bool AMethod(int x) => x < 5;

The Motivation for Lambda Expressions 231

public static List<int> FindEvenNumbers(List<int> numbers)
{
 List<int> onlyEvens = new List<int>();

 foreach(int number in numbers)
 {
 if(number % 2 == 0) // checks if it is even using mod operator
 onlyEvens.Add(number);
 }

 return onlyEvens;
}

We could then call that method and get back our list of even numbers. But that’s a lot of work for a single

method that may only ever be used once.

The Delegate Approach
Fast forward to Chapter 32, where we learned about delegates. For this particular task, delegates will

actually be able to go a long way towards helping us.

As it so happens, there’s a method called Where that is a part of the List class (actually, it is an extension

method) that uses a delegate. Using the Where method looks like this:

IEnumerable<int> evenNumbers = numbers.Where(MethodMatchingTheFuncDelegate);

The Func delegate that the Where method uses is generic, but in this specific case, must return the type

bool, and have a single parameter that is the same type that the List contains (int, in this example). The

Where method goes through each element in the array and calls the delegate for each item. If the

delegate returns true for the item, it is included in the results, otherwise it isn’t.

Let me show you what I mean with an example. Instead of our first approach, we could write a simple

method that determines if a number is even or not:

public static bool IsEven(int number)
{
 return (number % 2 == 0);
}

This method matches the requirements of the delegate the Where method uses in this case (returns

bool, with exactly one parameter of type int).

IEnumerable<int> evenNumbers = numbers.Where(IsEven);

That’s pretty readable and fairly easy to understand, as long as you know how delegates work. But let’s

take another look at this.

Anonymous Methods
While what we’ve done with the delegate approach is a big improvement over crafting our own method to

do all of the work, it has two small problems. First, a lot of times that we do something like this, the

method is only ever used once. It seems like overkill to go to all of the trouble of creating a whole method

to do this, especially since it starts to clutter the namespace. We can no longer use the name IsEven for

anything else within the class. That may not be a problem, but it might.

Second, and perhaps more important, that method is located somewhere else in the source code. It may

be elsewhere in the file, or even in a completely different file. This separation makes it a bit harder to truly

understand what’s going on when you look at the source code. It our current case, this is mostly solved by

calling the method something intelligent (IsEven) but you don’t always get so lucky.

232 Chapter 37 Lambda Expressions

This issue is common enough that back in C# 2.0, they added a feature called anonymous methods to deal

with it. Anonymous methods allow you to define a method “in line,” without a name.

I’m not going to go into a whole lot of detail about anonymous methods here, because lambda

expressions mostly replaced them.

To accomplish what we were trying to do with an anonymous method, instead of creating a whole

method named IsEven, we could do the following:

numbers.Where(delegate(int number) { return (number % 2 == 0); });

If you take a look at that, you can see that we’re basically taking the old IsEven method and sticking it in

here, “in line.”

This solves our two problems. We no longer have a named method floating around filling up our

namespace, and the code that does the work is now at the same place as the code that needs the work.

I know, I know. You’re probably saying, “But that code is not very readable! Everything’s just smashed

together!” And you’re right. Anonymous methods solved some problems, while introducing others. You

would have to decide which set of problems works best for you, depending on your specific case.

But this finally brings us to lambda expressions.

Lambda Expressions

Basically, a lambda expression is simply a method. More specifically, it is an anonymous method that is

written in a different form that (theoretically) makes it a lot more readable. Lambda expressions were new

in C# 3.0.

Creating a lambda expression is quite simple. Returning to the IsEven problem from earlier, if we want to

create a lambda expression to determine if a variable was even or odd, we would write the following:

x => x % 2 == 0

The lambda operator (=>) is read as “goes to” or “arrow.” (So, to read this line out loud, you would say “x

goes to x mod 2 equals 0” or “x arrow x mod 2 equals 0.”) The lambda expression is basically saying to

take the input value, x, and mod it with 2 and check the result against 0.

You may also notice with a lambda expression, we didn’t use return. The code on the right side of the =>

operator must be an expression, which evaluates to a single value. That value is returned, and its type

becomes the return type of the lambda expression.

This version is the equivalent of all of the other versions of IsEven that we wrote earlier in this chapter.

Speaking of that earlier code, this is how we might use this along with everything else:

IEnumerable<int> evens = numbers.Where(x => x % 2 == 0);

It may take a little getting used to, but generally speaking it is much easier to read and understand than

the other techniques that we used earlier.

In Depth
The Name “Lambda.” The name “lambda” comes from lambda calculus, which is the mathematical

basis for programming languages. It is basically the programming language people used before there

were computers at all. (Which is kind of strange to think about.) “Lambda” would really be spelled

with the Greek letter lambda (λ) but the keyboard doesn’t have it, so we just use “lambda.”

Multiple and Zero Parameters 233

Multiple and Zero Parameters

Lambda expressions can have more than one parameter. To use more than one parameter, you simply

list them in parentheses, separated by commas:

(x, y) => x * x + y * y

The parentheses are optional with one parameter, so in the earlier example, I’ve left them off.

This example above could have been written instead as a method like the following:

public int HypoteneuseSquared(int x, int y)
{
 return x * x + y * y;
}

Along the same lines, you can also have a lambda expression that has no parameters:

() => Console.WriteLine("Hello World!")

Type Inference Failures and Explicit Types

The C# compiler’s type inference is smart enough to look at most lambda expressions and figure out what

variable types and return type you are working with, but in some cases, the type inference fails, and you

have to fall back to explicitly stating the types in use, or the code won’t compile.

If this happens, you’ll need to explicitly put in the type of the variable, like this:

(int x) => x % 2 == 0;

Using explicit types in your lambda expressions is always an option, not just when the compiler can’t infer

the type. Most C# programmers will generally take advantage of type inference when possible in a

lambda, but if you like the syntax better or if it makes some specific situation clearer, feel free to use a

named type instead of just using type inference, even if it isn’t required.

Statement Lambdas

As you’ve seen by now, most methods are more than one line long. While lambda expressions are

particularly well suited for very short, single line methods, there will be times that you’ll want a lambda

expression that is more than one line long. This complicates things a little bit, because now you’ll need to

add in semicolons, curly braces, and a return statement, but it can still be done:

(int x) => { bool isEven = x % 2 == 0; return isEven; }

The form we were using earlier is called an expression lambda, because it had only one expression in it.

This new form is called a statement lambda. As a statement lambda gets longer, you should probably

consider pulling it out into its own method.

Scope in Lambda Expressions

From what we’ve seen so far, lambda expressions have basically behaved like a normal method, only

embedded in the code and with a different, cleaner syntax. But now I’m going to show you something that

will throw you for a loop.

Inside of a lambda expression, you can access the variables that were in scope at the location of the

lambda expression. Take the following code, for example:

234 Chapter 37 Lambda Expressions

int cutoffPoint = 5;
List<int> numbers = new List<int>(){ 1, 7, 4, 2, 5, 3, 9, 8, 6 };

IEnumerable<int> numbersLessThanCutoff = numbers.Where(x => x < cutoffPoint);

If our lambda expression had been turned into a method, we wouldn’t have access to that cutoffPoint

variable. (Unless we supplied it as a parameter.) This actually adds a ton of power to the way lambda

expressions can work, so it is good to know about.

(For what it’s worth, anonymous methods have the same feature.)

Expression-Bodied Members

Lambda expressions were introduced to C# in version 3.0, and as I mentioned earlier, one of the big

draws to it is that the syntax is much more concise. That’s great for short methods that would otherwise

require a lot of overhead to define.

C# 6.0 extends this a little, allowing you to use the same expression syntax to define normal non-lambda

methods within a class. For example, consider the method below:

public int ComputeSquare(int value)
{
 return value * value;
}

Now that we know about lambda expressions and the syntax that goes with them, it makes sense to point

out that this method could also be implemented with the same expression syntax:

public int ComputeSquare(int value) => value * value;

This only works if the method can be turned into a single expression. In other words, we can use the

expression lambda syntax, but not the statement lambda syntax. If we need a statement lambda, we

would just write a normal method.

This syntax is not just limited to methods. Any method-like member of a type can use the same syntax. So

that includes indexers, operator overloads, and properties (though this only applies to read-only

properties where your expression defines the getter and the property has no setter). The following simple

class shows all four of these in operation:

public class SomeSortOfClass
{
 // These two private instance variables are used by the methods below.
 private int x;
 private int[] internalNumbers = new int[] { 1, 2, 3 };

 // Property (read-only, no setter allowed)
 public int X => x;

 // Operator overload
 public static int operator +(SomeSortOfClass a, SomeSortOfClass b) => a.X + b.X;

 // Indexer
 public int this[int index] => internalNumbers[index];

 // Normal method
 public int ComputeSquare(int value) => value * value;
}

.

Lambdas vs. Local Functions 235

Lambdas vs. Local Functions

In all cases where you might use a lambda, you could also use a local function, which was introduced in

Chapter 28. The scenarios in which you might use a lambda are also good fits for local functions, and the

two can even be combined together, using an expression-bodied local function. To illustrate, consider the

following three methods which are all equivalent in terms of functionality:

public static IEnumerable<int> FindEvenNumbers1(List<int> numbers)
{
 return numbers.Where(x => x % 2 == 0); // Plain lambda expression.
}

public static IEnumerable<int> FindEvenNumbers2(List<int> numbers)
{
 bool IsEven(int number) // Local function.
 {
 return number % 2 == 0;
 }

 return numbers.Where(IsEven);
}

public static IEnumerable<int> FindEvenNumbers3(List<int> numbers)
{
 bool IsEven(int number) => number % 2 == 0; // Expression-bodied local function.

 return numbers.Where(IsEven);
}

Each of the three above options are functionally equivalent, but with rather different syntax. The first is a

plain lambda expression. This is probably the most concise of the three, and for somebody comfortable

with lambda expressions, is quite readable.

The second is a local function. It isn’t nearly as concise, but has the advantage of giving a name to the

functionality.

The third is a local function with an expression body. This is something of a compromise of the two.

Each of the above can be the best option in different scenarios. All have their place. Pick the one that

produces the most readable code for any given situation.

Answers: (1) True. (2) False. (3) Lambda operator (=>). (4) x => x < 0. (5) False. (6) True.

Try It Out!
Lambda Expressions Quiz. Answer the following questions to check your understanding. When

you’re done, check your answers against the ones below. If you missed something, go back and

review the section that talks about it.

1. True/False. Lambda expressions are a special type of method.

2. True/False. A lambda expression can be given a name.

3. What operator is used in lambda expressions?

4. Convert the following to a lambda expression: bool IsNegative(int x) { return x < 0; }

5. True/False. Lambda expressions can only have one parameter.

6. True/False. Lambda expressions have access to the local variables in the method they

appear in.

This is a preview. These pages have been

excluded from the preview.

52 Glossary

.NET Core
A newer.NET Platform stack that is designed to be more

cross-platform friendly, and primarily targets Linux and

macOS. (Chapter 44.)

.NET Framework
The oldest (original) most popular, and most complete

stack within the .NET Platform. Aimed primarily at

Windows computers. This term is frequently used to refer

to the entire .NET ecosystem, though this book makes a

distinction between these two, and calls the entire system

the .NET Platform. (Chapters 1 and 44.)

.NET Platform
The platform C# is built for and utilizes. The term used in

this book to describe the entire .NET ecosystem, including

all stacks (the .NET Framework, .NET Core, Xamarin, etc.),

all app models, the entire .NET Standard Library, the

compilers, CLR runtime, CIL language, and other tools. This

is also sometimes called simply “.NET” and also frequently

called the .NET Framework, though this book makes a

distinction between the two. (Chapters 1 and 44.)

.NET Standard
A specification that defines a vast collection of reusable

types (classes, interfaces, structs, enums, etc.) that exist

across multiple stacks within the .NET Platform. The .NET

Standard allows you to reuse code and produce code that

can be migrated from stack to stack. It allows you to write

code that runs on the original .NET Framework, as well as

.NET Core, Xamarin, and other stacks. The .NET standard

has many different levels or version numbers. Higher

version numbers include more reusable material. Lower

version numbers allow you to target more diverse stacks.

(Chapters 1 and 44.)

.NET Standard Library
See .NET Standard.

Abstract Class
A class that you cannot create instances of. Instead, you

can only create instances of derived classes. The abstract

class is allowed to define any number of members, both

concrete (implemented) and abstract (unimplemented).

Derived classes must provide an implementation for any

abstract members defined by the abstract base class

before you can create instances of the type. (Chapter 23.)

Abstract Method
A method declaration that does not provide an

implementation or body. Abstract methods can only be

defined in abstract classes. Derived classes that are not

abstract must provide an implementation of the method.

(Chapter 23.)

Accessibility Level
Types and members are given different levels that they can

be accessed from, ranging from being available to anyone

who has access to the code, down to only being accessible

from within the type they are defined in. More restrictive

accessibility levels make something less vulnerable to

tampering, while less restrictive levels allow more people

to utilize the code to get things done. It is important to

point out that this is a mechanism provided by the C#

language to make programmer’s lives easier, but it is not a

way to prevent hacking, as there are still ways to get access

 Glossary 355

to the code. Types and type members can be given an

access modifier, which specifies what accessibility level it

has. The private accessibility level is the most restrictive,

and means the code can only be used within the type

defining it, protected can be used within the type defining

it and any derived types, internal indicates it can be used

anywhere within the assembly that defines it, and public

indicates it can be used by anyone who has access to the

code. Additionally, the combination of protected internal

can be used to indicate that it can be used within the

defining type, a derived type, or within the same assembly.

(Chapters 18 and 22.)

Accessibility Modifier
See Accessibility Level.

Anonymous Method
A special type of method where no name is ever supplied

for it. Instead, a delegate is used, and the method body is

supplied inline. Because of their nature, anonymous

methods cannot be reused in multiple locations. Lambda

expressions largely supersede anonymous methods and

should usually be used instead. (Chapter 37.)

Anonymous Type
A type (specifically a class) that does not have a formal type

name and is created by using the new keyword with a list

of properties. E.g., new { A = 1, B = 2 }. The properties of

an anonymous type are read-only. (Chapter 19.)

App Model
A component of the .NET Platform that allows you to easily

create a specific type of application. This primarily consists

of a library of reusable code for creating applications of

that type, but also contains additional infrastructure such

as a deployment model or a security model. (Chapter 44.)

Argument
See parameter.

Array
A collection of multiple values of the same type, placed

together in a list-like structure. (Chapter 13.)

ASP.NET
An app model for building web-based applications using

the .NET Framework or .NET Core stacks. This book does

not cover ASP.NET in depth. (Chapter 44.)

Assembly
Represents a single block of redistributable code, used for

deployment, security, and versioning. An assembly comes

in two forms: a process assembly, in the form of an EXE file,

and a library assembly, in the form of a DLL file. An EXE file

contains a starting point for an application, while a DLL

contains reusable code without a specified starting point.

See also project and solution. (Chapter 44.)

Assembly Language
A very low level programming language where each

instruction corresponds directly to an equivalent

instruction in machine or binary code. Assembly languages

can be thought of as a human readable form of binary.

(Chapter 44.)

Assignment
The process of placing a value in a specific variable.

(Chapter 5.)

Associativity
See Operator Associativity.

Asynchronous Programming
The process of taking a potentially long running task and

pulling it out of the main flow of execution, having it run on

a separate thread at its own pace. This relies heavily on

threading. (Chapters 39 and 40.)

Attribute
A feature of C# that allows you to give additional meta

information about a type or member. This information can

be used by the compiler, other tools that analyze or

process the code, or at run-time. You can create custom

attributes by creating a new type derived from the

Attribute class. Attributes are applied to a type or

member by using the name and optional parameters for

the attribute in square brackets immediately above the

type or member’s declaration. (Chapter 43.)

Base Class
In inheritance, a base class is the one that is being derived

from. The members of the base class are included in the

derived type. A base class is also frequently called a

superclass or a parent class. A class can be a base class,

and a derived class simultaneously. See also inheritance,

derived class, and sealed class. (Chapter 22.)

Base Class Library
The .NET Standard Library implementation that is a part of

the .NET Framework. It is the most expansive and most

widely use implementation of the Standard Library

(Chapter 44.)

BCL
See Base Class Library.

This is a preview. These pages have been

excluded from the preview.

53 Index

Symbols

- operator, 43, 219

π, 57

-- operator, 58, 219

-= operator, 47, 216, 219

. operator, 85, 220

!= operator, 64, 219

% operator, 44, 219

%= operator, 47, 219

& operator, 278

:: operator, 293

&& operator, 67, 220, 278

&= operator, 279

& operator, 267

* operator, 43, 219, 266

*= operator, 47, 219

/ operator, 43, 219

/= operator, 47, 219

: operator, 145, 158

?: operator, 68

?? operator, 283

@ symbol, 52

[] operator, 223

^ operator, 279

^= operator, 279

| operator, 278

|| operator, 67, 220, 278

|= operator, 279

~ operator, 279

+ operator, 43, 219

++ operator, 58, 219

+= operator, 47, 216, 219

< operator, 64, 219

<< operator, 278

<<= operator, 279

<= operator, 65, 219

= operator, 47, 220

== operator, 62, 219

=> operator, 232

> operator, 64, 219

-> operator, 267

>= operator, 65, 219

>> operator, 278

>>= operator, 279

.NET Core, 310

.NET Framework, 4, 309, 354

.NET Platform, 301

.NET Standard Library, 4, 302, 308

 Index 375

A

abstract class, 151, 354

abstract keyword, 154

abstract method, 158, 354

accessibility level, 127, 354

internal, 121, 355

private, 114, 355

protected, 148, 355

protected internal, 355

public, 115, 355

accessibility modifier. See accessibility level

Action delegate, 216

addition, 43

Address Of operator, 267

algorithm, 21, 352

alias, 178

Android app model, 312

anonymous method, 231, 355

app model, 4, 303, 311

application virtual machine, 306

argument. See parameter

ArgumentNullException class, 198

array, 78, 144, 346, 355

declaring, 79

elements, 79

length, 80

retrieving and assigning values in, 79

as keyword, 147

ASP.NET, 311, 351, 355

assembler, 305

assembly, 12, 319, 355

assembly language, 305, 355

assembly reference, 331

assignment, 355, 361, 365

assignment operator, 46

associativity, 46

async keyword, 256

asynchronous programming, 251, 355

AsyncResult pattern, 254

with the Task-based Asynchronous Pattern, 255

with the ThreadPool, 253

asynchrony. See asynchronous programming

attribute, 274, 355

await keyword, 256

B

backing field, 126

base case, 96

base class, 145, 355

Base Class Library, 4, 302, 309, 355

base keyword, 148, 153

BCL. See Base Class Library

binary, 3, 14, 356

binary language, 305

binary literal, 39

BinaryWriter class, 193

bit, 29

bit field, 277, 356

bitshift operator, 278

bitwise and operator, 278

bitwise complement operator, 279

bitwise logical operator, 278

bitwise operator, 356

bitwise or operator, 278

block scope, 116

bool type, 36, 66, 142

Boolean, 356

Boolean struct, 142

break keyword, 70, 75

breakpoint, 336, 356

built-in type, 31, 142, 356

byte, 29

Byte struct, 142

byte type, 32, 142

C

C++, 4, 356

Caesar cipher, 346

call stack, 335

callback method, 255

case keyword, 70

case label. See case statement

case statement, 70

casting. See typecasting

catch block, 196

catch keyword, 196

Char struct, 142

char type, 33, 142

checked context, 294

CIL. See Common Intermediate Language

class, 17, 112, 356

creating, 112

partial, 149

sealed, 148

class keyword, 113

class scope, 116

class variable. See static class variable

CLR. See Common Language Runtime

Code Window, 313, 356

command line arguments, 285, 356

comment, 19, 356

Common Intermediate Language, 302, 307, 356

Common Language Runtime, 4, 302, 306, 357

compiler, 14, 357

compiler error, 326

compiler warning, 326

compile-time contant. See constant

compound assignment operator, 47, 357

conditional operator, 67, 68, 357

376 Index

Console class, 95

const keyword, 273, 357

constant, 273, 357

run-time constant, 357

constant pattern, 202

constructor, 115, 357

default parameterless, 140

default parameterless constructor, 357

inheritance, 147

context switch, 246

continue keyword, 75

contravariance, 290

Convert class, 49, 95, 192

covariance, 290

critical section, 357

.csproj file, 341

.csproj.user file, 341

CSV file, 191

curly braces, 16, 64, 328, 357

D

data structure, 352

debug, 333, 357

debug mode, 15, 333

Decimal struct, 142

decimal type, 35, 142

declaration, 357

decrement, 357

default keyword, 70, 171

delegate, 206, 214, 231, 357

chaining, 209

creating, 206

relation to events, 218

using, 207

Delegate class, 208, 254

delegate keyword, 207

Delta Engine, 352

dependency, 319

derived class, 145, 357

Dictionary class, 160, 165

digit separator, 40

DirectX, 352

divide and conquer, 87, 358

DivideByZeroException class, 198

division, 43

division by zero, 56, 358

DLL, 319, 358

DLLImport attribute, 270

do keyword, 74

Double struct, 142

double type, 34, 142

do-while loop, 74

dynamic keyword, 260

dynamic language runtime, 260

dynamic object, 260

dynamic objects, 259

dynamic type checking, 259

dynamic typing, 259

DynamicObject class, 262

E

e (number), 57

E notation, 38

else keyword, 63

encryption, 346

enum. See enumeration

enum keyword, 85

enumeration, 358

flags, 279

underlying type, 86

error handling, 194

Error List, 315, 326, 358

escape character, 51

escape sequence, 51

event, 157, 212, 358

attaching and detaching, 215

defining, 213

raising, 214

relation to delegates, 218

event keyword, 214

EventArgs type, 214

EventHandler delegate, 214

EventHandler<TEventArgs> delegate, 216, 217

events, 253

exception, 194, 334, 358

catching, 195

filters, 200

throwing, 195

Exception class, 195

exception filter, 200

exclusive or operator, 279

EXE, 319, 358

ExpandoObject class, 262

explicit, 358

explicit conversion, 55

explicit keyword, 286

expression, 44

expression lambda, 233

expression-bodied members, 234

extension method, 226, 358

extern keyword, 270

F

factorial, 96

false keyword, 36

Fibonacci sequence, 97

field. See instance variable

File class, 190

file I/O, 157, 190

file input, 190

file output, 190

FileStream class, 192

 Index 377

fixed keyword, 269

fixed size array, 269

fixed statement, 268

FizzBuzz, 77

Flags attribute, 279

float type, 34, 142

floating point number, 34

floating point type, 359

for keyword, 74

for loop, 74

foreach keyword, 82

foreach loop, 77, 82, 272

forever loop, 73

FormatException class, 198

frame, 99

Framework Class Library, 359

from clause, 238

fully qualified name, 176, 359

Func delegate, 211

function. See method

G

game development, 352

garbage collection, 79, 99, 359

generic method, 171

generic type parameter, 163

generics, 160, 167, 359

covariance and contravariance, 290

inheritance, 290

motivation for, 160

get keyword, 126

global keyword, 293

goto keyword, 287

graphical user interfaces, 311

group clause, 241

group join, 242

GUI development, 311

H

heap, 98, 359

Hello World!, 10

hexadecimal literal, 39

I

IAsyncResult interface, 254

IDE. See Integrated Development Environment

IDisposable interface, 280

IDynamicMetaObjectProvider interface, 261

IEnumerable interface, 83

IEnumerable<T> interface, 164, 237

if keyword, 61

if statement, 61

immutability, 141, 360

implicit, 359

implicit conversion, 55

implicit keyword, 286

implicitly typed local variable, 360

in keyword, 83

increment, 359

index, 79

index initializer syntax, 225

indexer, 157, 220, 223, 359

multiple indices, 224

types in, 224

IndexOutOfRangeException class, 198

indirection operator, 267

infinite loop, 73

infinity, 56

inheritance, 144, 360

instance variable, 114, 360

int type, 31, 142

Int16 struct, 142

Int32 struct, 142

Int64 struct, 142

integer division, 54, 360

integer type, 33

integral type, 33, 360

Integrated Development Environment, 6, 360

IntelliSense, 316, 360

interface, 150, 156, 360

creating, 157

implementing, 158

implementing multiple, 159

naming convention, 158

interface keyword, 158

internal keyword, 121

into clause, 242

InvalidCastException class, 198

invariance, 290

iOS app model, 312

is keyword, 146

patterns, 204

is-a relationship, 145, 360

is-a-special-type-of relationship, 145, 360

iterator, 360

J

jagged array, 82, 360

Java, 4, 351, 361

JIT compiler. See Just-in-Time compiler

join clause, 240

Just-in-Time compiler, 306, 361

K

keyword, 16, 361

378 Index

L

labeled statement, 287

lambda expression, 230, 361

multiple parameters, 233

zero parameters, 233

lambda operator, 232

Language Integrated Query, 236, 361

lazy evaluation, 67

left associativity, 46

let clause, 240

library assembly, 13

line numbering, 316

lines of code, 229

LINQ. See Language Integrated Query

Linux, 9

List class, 231

literal, 35, 38

local function, 180

local variable, 114, 361

lock keyword, 250

long type, 32, 142

loop, 72, 361

breaking out of, 75

continuing to next iteration, 75

M

managed memory, 99, 361

math, 42

Math class, 57

member, 17, 88, 109, 114, 213, 361

memory barrier, 296

method, 16, 87, 157, 180, 361

calling, 89

local function, 180

multiple return values, 11, 186

passing parameters to, 92

returning from, 90

signature, 94

method body. See method implementation

method call, 361

method implementation, 89, 362

method overloading, 93, 331

method overriding, 152

method scope, 116

method signature, 362

Microsoft Developer Network, 353

mod, 44

modulo operator, 44

MonoGame, 352

MulticastDelegate class, 208

multi-dimensional array, 82

multiple inheritance, 150, 159

multiplication, 43

mutex, 250, See mutual exclusion

mutual exclusion, 250, 362

N

name collision, 178, 362

name hiding, 117, 362

named parameter, 182, 362

nameof operator, 275

namespace, 17, 175, 330, 342, 362

namespace alias operator, 293

namespace keyword, 16, 175

NaN, 57, 362

narrowing conversion, 55

nested statements, 67

nesting, 76, 362

new keyword, 79, 154

NotImplementedException class, 198

NotSupportedException class, 198

NuGet package manager, 321

null keyword, 102

null propagation, 283

null propagation operators, 283

null reference, 102, 362

nullable type, 283, 362

Nullable<T> struct, 283

NullReferenceException class, 198, 214

numeric literal, 38

O

object, 362

Object class, 142

object initializer syntax, 128

object keyword, 148

object type, 142, 247

object-oriented programming, 105, 362

Obsolete attribute, 274

off-by-one error, 79

OpenGL, 352

operand, 43

operation, 43

operator, 43, 362

binary, 43, 68, 356

ternary, 68, 366

unary, 45, 68, 367

operator keyword, 221

operator overloading, 219, 223, 363

operator precedence, 46

opereator associativity, 46

optional parameter, 181, 363

Options Dialog, 315

order of operations, 46, 363

orderby clause, 240

out keyword, 183

out-of-order execution, 295

output parameter, 184, 187

overflow, 57, 363

overloading, 93, 363

override, 152

 Index 379

override keyword, 152

P

package, 319

parameter, 92, 114, 363

variable number of, 182

parameter list, 92

ParameterizedThreadStart delegate, 247

params keyword, 183

parent class. See base class

parentheses, 46, 328, 363

parse, 191, 363

partial class, 363

partial keyword, 149

pattern

in switch statement, 203

with is keyword, 204

pattern matching, 201

pinned objects, 269

pointer, 266

pointer member access operator, 267

pointer type, 266, 364

polymorphism, 151, 364

postfix notation, 58

precedence, 46

prefix notation, 58

preprocessor directive, 281, 364

primitive type. See built-in type

private keyword, 114

procedure. See method

process assembly, 13

process virtual machine, 306

project, 12, 340, 364

Properties Window, 315

property, 124, 157, 223, 364

auto-implemented, 127

default value, 128

readonly, 127

protected keyword, 148

Q

query expression, 236, 364

R

Random class, 108

readonly keyword, 274, 357

real number, 34

rectangular array, 82, 364

recursion, 96, 364

ref keyword, 183

ref local variable, 185

refactor, 317, 364

reference, 100, 365

reference parameter, 184

reference semantics, 103, 365

reference type, 98, 100, 110, 365

reflection, 280, 365

regular expression, 201

relational operator, 64, 221, 365

release mode, 15, 333

remainder, 44

return, 59, 66, 90, 272, 329, 365

return keyword, 199

right associativity, 46

S

SByte struct, 142

sbyte type, 33, 142

scalar, 221

scientific notation, 38

scope, 233, 327, 365

sealed class, 365

sealed keyword, 148

select clause, 239

semicolon, 18

set keyword, 126

SharpDX, 352

short type, 32, 142

signature, 94

signed type, 32, 365

Single struct, 142

sizeof operator, 276

.sln file, 340

software engineering, 352

solution, 13, 340, 365

Solution Explorer, 314, 365

source code, 3, 366

square array, 82

square brackets, 366

stack, 98, 366

stack allocation, 267

stack trace, 99

StackOverflowException class, 198

statement lambda, 233

static, 366

static class, 121, 227

static class variable, 120

static constructor, 121

static keyword, 120, 227, 366

static method, 227

static type checking, 259

statically typed language, 259

String class, 142

string concatenation, 52

string type, 36, 142, 366

string.Split method, 192

struct, 138, 145, 366

380 Index

structure, 138

subclass, 145

subroutine. See method

subscript, 79

subtraction, 43

succinct null checking, 283

.suo file, 340

superclass, 145

switch keyword, 70

switch statement, 69

patterns, 203

types allowed, 71

synchronous programming, 252

event-based, 253

T

TAP. See Task-based Asynchronous Pattern

Task class, 255

Task<TResult> class, 255

Task-based Asynchronous Pattern, 255

TextReader class, 193

TextWriter class, 192

this keyword, 117, 227

thread, 245, 366

sleep, 247

Thread class, 246, 252

thread safety, 249, 250, 366

ThreadPool class, 253

ThreadStart delegate, 246

throw keyword, 197

true keyword, 36

try block, 196

try keyword, 196

type, 26, 366

Type class, 280

type conversion, 329

type inference, 40, 233, 367

type pattern, 202

type safety, 162, 367

type system, 31

typecasting, 55, 86, 146, 161, 286, 329, 367

typeof keyword, 280

U

uint type, 32, 142

UInt16 struct, 142

UInt32 struct, 142

UInt64 struct, 142

ulong type, 32, 142

unchecked context, 294

underflow, 57, 367

unhandled exception, 195

Unicode, 33

Unity, 352

unsafe code, 265, 367

unsafe context, 266

unsafe keyword, 266

unsigned type, 367

unverifiable code, 266

user input, 48

user-defined conversion, 286, 367

ushort type, 32, 142

using directive, 16, 175, 227, 330, 367

static, 179

using keyword, 16, 178

using statement, 280, 367

V

value keyword, 126

value semantics, 103, 367

value type, 98, 100, 367

ValueTuple class, 188

ValueTuple struct, 321

var keyword, 41

var pattern, 203

variable, 25, 367

assigning a value to, 27

declaring, 26

naming, 29

verbatim string literal, 52

version control system, 340

virtual keyword, 152, 158

virtual machine, 306, 368

advantages, 307

disadvantage, 308

virtual method, 151, 368

Visual Basic.NET, 368

Visual C++. See C++

Visual Studio, 6, 7, 11, 313, 368

installer, 7

keyboard shortcuts, 317

Visual Studio Code, 9

Visual Studio Community Edition, 7, 368

Visual Studio Enterprise Edition, 7

Visual Studio Professional Edition, 7, 368

void keyword, 89

volatile fields, 295

volatile keyword, 295

W

where clause, 239

where keyword, 170

while keyword, 72

while loop, 72

whitespace, 17, 64

widening conversion, 55

Windows Forms, 311, 351, 368

Windows Presentation Foundation, 368

word count, 228

WPF, 351

 Index 381

X

Xamarin, 9, 303, 310, 352

Xamarin Studio, 9

Xenko, 352

XML Documentation Comment, 20, 95, 368

XNA, 352

xor operator, 279

