

Starbound Software

RB Whitaker

The C# Player ��s Guide
Third Edition

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the author and publisher were aware of
those claims, those designations have been printed with initial capital letters or in all capitals.

The author and publisher of this book have made every e ffort to ensure that the information in this book
was correct at press time. However, the author and publisher do not assume , and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such
errors or omissions result from negligence, accident, or any other cause.

Copyright © 2012-2017 by RB Whitaker

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording , or by any information storage and retrieval
system, without written permission from the author, except for the inclusion of brief quotations in a
review. For information regarding permissions, write to:

RB Whitaker
rbwhitaker@outlo ok.com

ISBN-10: 0-9855801-3-5
ISBN-13: 978-0-9855801-3-1

1 Contents at a

Glance

 Acknowledgements xvii

 Introduction xix

Part 1: Getting Started

1. The C# Programming Language 3

2. Installing Visua l Studio 6

3. Hello World: Your First C# Program 10

4. Comments 19

Part 2: The Basics

5. Variables 25

6. The C# Type System 31

7. Basic Math 42

8. User Input 48

9. More Math 53

10. Decision Making 60

11. Switch Statements 68

12. Looping 72

13. Arrays 78

14. Enumerations 84

15. Methods 87

16. Value and Reference Types 98

iv Conten ts at a Glance

Part 3: Object -Oriented Programming

17. Object -Oriented Basics 107

18. Making Your Own Classes 112

19. Properties 124

20. Tic-Tac-Toe 130

21. Structs 138

22. Inheritance 144

23. Polymorphism, Virtual Methods, and Abstract Classes 151

24. Interfaces 156

25. Using Generics 160

26. Making Generic Types 167

Part 4: Advanced Topics

27. Namespaces and Using Directives 175

28. Methods Revisited 180

29. Reading and Writing Files 190

30. Error Handling and Exceptions 194

31. Pattern Matching 201

32. Delegates 206

33. Events 212

34. Operator Overloading 219

35. Indexers 223

36. Extension Methods 226

37. Lambda Expressions 230

38. Query Expressions 236

39. Threads 245

40. Asynchronous Programming 251

41. Dynamic Objects 259

42. Unsafe Code 265

43. Other Features in C# 271

Part 5: Mastering the Tools

44. The .NET Platform 301

45. Getting the Most from Visual Studio 313

46. Dependen cies and Multiple Projects 319

47. Handling Common Compile r Errors 326

48. Debugging Your Code 333

49. How Your Project Files are Organized 339

Contents at a Glance v

Part 6: Wrapping Up

50. Try It Out ! 345

51. What ��s Next? 351

 Glossary 354

 Tables and Charts 369

 Index 374

2 Table of Contents

 Acknowledgements xvii

 Introduction xi x

The Player��s Guide xix

How This Book is Organized xx

Getting the Most from This Book xxii

I Genuinely Want Your Feedback xxiii

This Book Comes with Online Content xxiii

Part 1: Getting Started

1. The C# Programming Language 3

What is C#? 3

What is the .NET Platform ? 4

C# and .NET Versions 5

2. Installing Visua l Studio 6

Versions of Visual Studio 7

The Installation Process 7

C# Programming on Mac and Linux 9

3. Hello World: Your First C# Program 10

Creating a New Project 10

A Brief Tour of Visual Studio 11

Building Blocks: Projects , Solutions , and Assemblies 12

Modifying Your Project 13

Compiling and Running Your Project 14

A Closer Look at Your Program 16

 vii

Whitespace Doesn ��t Matter 17

Semicolons 18

4. Comments 19

What is a Comment? 19

Why Should I Use Comments? 19

How to Make Comments in C# 20

How to Make Good Comments 21

Part 2: The Basics

5. Variables 25

What is a Variable? 25

Creating Variables 26

Assigning Values to Variables 27

Retrieving the Contents of a Variable 27

How Data is Stored 28

Multiple Declarations and Assignments 29

Good Variable Names 29

6. The C# Type System 31

An Introduction to the Type System 31

The ��int �� Type 31

The ��byte ��, ��short ��, and ��long �� Types 32

The ��sbyte��, ��ushort ��, ��uint ��, and ��ulong �� Types 32

The ��char �� Type 33

The ��float ��, ��double ��, and ��decimal �� Types 34

The ��bool �� Type 36

The ��string �� Type 36

Numeric Literal Variations 38

Type Inference 40

7. Basic Math 42

Operations and Operators 42

Addition, Subtraction, Multiplication, and Division 43

The Remainder Operator 44

Unary ��+�� and ��-�� Operators 45

Operator Precedence and Parentheses 46

Why the ��=�� Sign Doesn��t Mean Equals 46

Compound Assignment Operators 47

8. User Input 48

User Input from the Console 48

Convertin g Types 48

A Complete Sample Program 49

viii Table of Contents

Escape Characters 51

String Interpolation 52

9. More Math 53

Integer Division 54

Working with Dif ferent Types and Casting 55

Division b y Zero 56

Infinity, NaN, e, �•, MinValue, and MaxValue 56

Overflow and Underflow 57

Incrementing and Decrementing 58

10. Decision Making 60

The ��if �� Statement 61

The ��else�� Statement 62

��else if �� Statements 62

Curly Braces Not Always Needed 63

Relational Operators: ==, !=, <, >, <=, >= 63

Using ��bool �� in Decision Making 65

The ��!�� Operator 65

Conditional Operators: && and || (And and Or) 66

Nesting If Statem ents 66

The Conditional Operator ?: 67

11. Switch Statements 68

The Basics of Switch Statements 68

Types Allowed with Switch Statements 70

No Implicit Fall -Through 70

12. Looping 72

The While Loop 72

The Do-While Loop 74

The For Loop 74

Breaking Out of Loops 75

Continuing to the Next Iteration of the Loop 75

Nesting Loop s 76

Still to Come : Foreach 77

13. Arrays 78

What is an Array? 78

Creating Arrays 79

Getting and Setting Values in Arrays 79

More Ways to Create Arrays 80

Array Length 80

Some Examples with Arrays 80

Arrays of Arrays and Multi -Dimensional Arrays 81

The ��foreach �� Loop 82

 ix

14. Enumerations 84

The Basics of Enumerations 84

Why Enumerations are Useful 86

Underlying Types 86

Assigning Numbers to Enumeration Values 86

15. Methods 87

Creating a Method 88

Calling a Method 89

Returning Stuff from a Method 90

Passing Stuff to a Method 92

Passing in Multiple Parameters 92

Method Overloading 93

Revisiting the Convert and Console Classes 95

XML Documentation Comments 95

The Minimum You Need to Know About Recursion 96

16. Value and Reference Types 98

The Stack and the Heap 98

Memory Management and Garbage Collection 99

References 100

Value Types and Reference Types 100

Null: References to Nothing 102

Value and Reference Semantics 103

Part 3: Object -Oriented Programming

17. Object -Oriented Basics 107

Object Classes and Object Instances 107

Working with an Existing Class 108

Using an Instance 109

The Power of Objects 110

Classes are Reference Types 110

18. Making Your Own Classes 112

Creating a New Class 112

Instance Variables 114

Access Modifiers : private and public 114

Constructor s 115

Methods 118

The ��static �� Keyword 120

Using Our Class 121

The ��internal �� Access Modifier 121

Class Design and Software Engineering 122

x Table of Contents

19. Properties 124

The Motivation for Properties 124

Creating Properties 125

Different Accessibility Levels 127

Auto -Implemented Properties 127

Object Initializer Syntax 128

Anonymous Types 129

20. Tic-Tac-Toe 130

Requirements 130

High-Level Design 131

Refactoring and Iterative Design 132

The Full Solution 132

21. Structs 138

Creating a Struct 138

Structs vs. Classes 139

Deciding Between a Struct and a Class 140

Prefer Immutable Value Types 141

The Built -In Types are Aliases 142

22. Inheritance 144

Base Classes 145

Derived Classes 145

Using Derived Classes 146

Constructors and Inheritance 147

The ��protected �� Access Modifier 148

The Base Class of Everything: object 148

Sealed Classes 148

Partial Classes 149

C# Does Not Support Multiple Inheritance 150

23. Polymorphism, Virtual Methods, and Abstract Classes 151

Polymorphism 151

Revisiting the ��base�� Keyword 153

Abstract Base Classes 154

The ��new �� Keyword with Methods 154

24. Interfaces 156

What is an Interface? 156

Creating an Interface 157

Using Interfaces 158

Multiple Interfaces and Inheritance 159

25. Using Generics 160

The Motivation for Generics 160

What are Generics? 162

 xi

The List Class 162

The IEnumerable<T> Interface 164

The Dictionary Class 165

26. Making Generic Types 167

Creating Your Own Generic Types 167

Using Your Generic Type in Your Class 168

Generic Type Constraints 169

Generic Methods 171

The Default Operator 171

Part 4: Advanced Topics

27. Namespaces and Using Directives 175

Namespaces 175

Fully Qualified Names 176

Using Directives 176

The Error ��The type or namespace X could not be found �� 176

Name Collisions 178

Static Using Directives 179

28. Methods Revisited 180

Local Functions 180

Optional Parameters 181

Named Parameters 182

Variable Number of Parameters 182

The ��out �� and ��ref �� Keyword s 183

Returning Multiple Values 186

29. Reading and Writing Files 190

The File Class 190

Text-Based Files 192

Binary Files 193

30. Error Handling and Exceptions 194

How Exception Handling Works 195

Catching Exceptions 196

Handling Different Exceptions in Different Ways 197

Throwing Exceptions 197

The ��finally �� Keyword 199

Exception Filters 200

Some Rules about Throwing Exceptions 200

31. Pattern Matching 201

Contrasted with Regular Expressions 201

The Pattern Concept 202

xii Table of Contents

Available Pattern s 202

Using Patterns in C# 203

Expect Patterns to Expand 205

32. Delegates 206

Delegates: Treating Methods like Objects 206

Creating a Delegate 206

Using Delegates 207

The Delegate and MulticastDele gate Classes 208

Delegate Chaining 209

The Action and Func Delegates 211

33. Events 212

Defining an Event 213

Raising an Event 214

Attaching and Detaching Even t Handlers 215

Common Delegate Types Used with Events 216

The Relationship between Delegates and Events 218

34. Operator Overloading 219

Overloading Operators 220

35. Indexers 223

How to Make an Indexer 223

Using Other Types as an Index 224

Index Initializer Syntax 225

36. Extension Methods 226

Creating an Extension Method 227

37. Lambda Expressions 230

The Motivation for Lambda Expressions 230

Lambda Expressions 232

Multiple and Zero Parameters 233

Type Inference Failures and Explicit Types 233

Statement Lambdas 233

Scope in Lambda Expressions 233

Expression -Bodied Members 234

Lambdas vs. Local Functions 235

38. Query Expressions 236

From Clauses 238

Select Clauses 239

Where Clauses 239

Multiple From Clauses 239

Let Clauses 240

Join Clauses 240

Orderby Clauses 240

 xiii

Group Clauses 241

Into Clauses 242

Group Joins 242

Query Syntax and Method Call Syntax 243

Queries are Lazy When Possible 243

39. Threa ds 245

Threading Code Basics 246

Using Parameter izedThreadStart 247

Thread Safety 249

40. Asynchronous Programming 251

What is Asynchron ous Programming? 251

Approaches from the Early Days 252

The Task-based Asynchronous Pattern 255

The ��async�� and ��await �� Keywords 256

41. Dynamic Objects 259

Dynamic Type Checking 260

Dynamic Objects and the Dynamic Language Runtime 260

Emulating Dynamic Objects with Dictionaries 261

ExpandoObject 262

Extending DynamicObject 262

When to Use Dynamic Object Variations 264

42. Unsafe Code 265

Unsafe Contexts 265

Pointer Types 266

Stack Allocations 267

Fixed Statements 268

Fixed Size Arrays 269

Calling Native Code with Platform Invocation Services 270

43. Other Features in C# 271

Iterators and the Yield Keyword 272

Constants 273

Attributes 274

The ��nameof �� Operator 275

The ��sizeof ����Operator 276

Bit Fields 277

Reflection 280

Using Statements and the IDisposable Interface 280

Preprocessor Directives 281

Nullable Types 283

Simple Null Checks: Null Propagation Operat ors 283

xiv Table of Contents

Command Line Arguments 285

User-Defined Conversions 286

The Notorious ��goto �� Keyword 287

Generic Covariance and Contravariance 290

Advanced Namespace Management 293

Checked and Unchecked Contexts 294

Volatile Fields 295

Part 5: Mastering the Tools

44. The .NET Platform 301

Overview of the .NET Platform 301

A Brief History of the .NE T Platform 304

Binary, Assembly, and Compilers 304

Virtual Machines and the Common Language Runtime 306

The .NET Standard Library 308

The .NET Framework 309

.NET Core 310

Xamarin 310

App Models 311

45. Getting the Most from Visual Studio 313

Windows 313

The Options Dialog 315

Including and Excluding Files 315

Showing Line Numbers 316

IntelliSense 316

Basic Refactoring 317

Keyboard Shortcuts 317

46. Dependen cies and Multiple Projects 319

Adding DLL References 320

NuGet Packages 321

Creating and Referencing Multiple Projects 323

47. Handling Common Compile r Errors 326

Understanding Compile r Errors 326

Compiler Warnings 326

Common Compiler Errors 327

General Tips for Handling Errors 331

48. Debugging Your Code 333

Launching Your Program in Debug Mode 333

Viewing Exceptions 334

Editing Your Code While Debugging 335

Breakpoints 336

 xv

Stepping Through Your Program 336

49. How Your Project Files are Organized 339

Visual Studio ��s Projects Directory 340

The Solution Directory 340

The Project Directory 341

Part 6: Wrapping Up

50. Try It Out ! 345

Message from Julius Caesar 346

Reverse It! 346

Pig Dice 347

Connect Four 347

Conway��s Game of Life 348

51. What ��s Next? 351

Other Frameworks and Libraries 351

Other Topics 352

Make Some Programs 352

Where Do I Go to Get Help? 353

Parting Words 353

 Glossary 354

 Tables and Charts 369

 Index 374

3 Acknowledgements

The task of writing a book is like writing software. When you start , you��re sure it ��s only going to take a few
weeks. It��ll be easy, you think . But as you start working, you start seeing that you ��re going to need to make
changes, and lots of them. You need to rearrange entire chapters, add topics you hadn ��t even thought
about, and you discover that there ��s not even going to be a place in your book for that chapter called
Muppets of the Eastern Seaboard.

I couldn ��t have ever finished this book without help. I ��ll start by thanking Jack Wall, Sam Hulick, Clint
Mansell, and the others who wrote the music for Mass Effect. (You think I ��m joking, don ��t you?) I listened to
their music nearly incessantly as I wrote this book. Because of them, every moment of the creation of this
book felt absolutely epic.

I need to also thank the many visitors to my game development tutorials site, who provided feedback on
the early versions of this work . In particular, I want to thank Jonathan Loh, Thomas Allen , Daniel Bickler ,
and Mete ÇOM, who went way above and b eyond, spending hours of their own personal time, read ing
through this book and provided detailed critique and corrections. With their help, this book is far more
useful and valuable .

I also need to thank my mom and dad. Their confidence in me and their en couragement to always do the
best I can has caused me to do things I never could have done without them.

Most of all, I want to thank my beautiful wife, who was there to lift my spirits when the weight of writing a
book became unbearable , who read through my book and gave honest, thoughtful, and creative feedback
and guidance, and who lovingly pressed me to keep going on this book, day after day. Without her, this
book would still be a random scattering of Word documents, buried in some obscure folder on my
computer, collecting green silicon -based mold.

To all of you, I owe you my sincerest gratitude.

-RB Whitaker

4 Introduction

The Player ��s Guide
This book is not about playing video games. (Though programming is as fun as playing video games for
many people.) Nor is it about making video games, specifically. (Though you def initely can make video
games with C#.)

Instead, think of this book like a player ��s guide, but for a programming language. A player ��s guide is a
popular kind of book that is written to help game players:

�x learn the basics of the game,
�x prevent them from getting stuck,
�x understand how the world they ��re playing in works,
�x learn how to overcome the obstacles and enemies they face,
�x point out common pitfalls they may face and locate useful items,
�x and master the tools they ��re given.

This book accomplishes those s ame goals for the C# programming language. I ��ll walk you through the
language fro m the ground up, point out places where people get stuck, provide you with hands -on
examples to explore, give you quizzes to ensure you ��re on the right track, and describ e how to use the
tools that you ��ll need t o create programs. I ��ll show you the ins and outs of the many features of C#,
describing why things work the way they do, rather than just simple mechanics and syntax.

In a Nutshell
�x Describes the goals of this book, which is to function like a player ��s guide, not a

comprehensive cover -everything -that -ever-existed book.
�x Breaks down how th e book is organized from a high -level perspective, as well as pointing out

some of the extra �
features �� of the book.
�x Provides some ideas on how to get the most out of this book for p rogrammers, beginners,

and anyone who is short on time.

xx Introduction

My goal is to provide you with the �
dungeon map �� to direct you as you begin delving into C#, while still
allowing yo u to mostly explore whatever you want, when ever you want .

I want to point out that t his book is intentionally not called Everything you Need to Know about C#, or The
Comprehensive Guide to C#. (Note that if books with those titles actually exist, I ��m not referring to them
specifically, but rather, to just the general idea of an all -encompassing book.) I��m here to tell you, when
you��re done with this book, you ��ll still have lots to learn about C#.

But guess what? That ��s going to happen with any book you use , includi ng those all -encompassing books .
Programming languages are complex creations, and there are enough dark corners and strange
combinations that nobody can learn everything there is to know about them . In fact, I��ve even seen the
people who design ed the C# language say they just learned something new about it! For as long as you
use C#, you��ll constantly be learning new things about it , and that ��s actually one of the things that makes
programming interesting.

I��ve tried to cover a lot of ground in this book, and with roughly 40 0 pages, anyone would expect that to
be quite a bit. And it is. But there are plenty of other books out there that are 800 or even 1200 pages
long. A book so heavy, you��ll need a pa cking mule to carry it anywhere. That, or permanently place it on
the central dais of an ancient library, with a single beam of dusty light shining in on it through a hole in
the marble ceiling. Instead of all that , the goal of this book is effectiveness and clarity , not
comprehensiven ess. Something that will fit both on your shelf and in your brain.

It is important to point out that this book is focused on the C# programming language, rather than
libraries for building certain specific application types. So while you can build desktop applications, web
pages, and computer games with C#, we won ��t be discussing WPF, ASP.NET, DirectX, or any other
platform - or framework -specific code. Instead, we ��ll focus on core C# code, w ithout bogging you down
with those additional libraries at first. Once you ��ve got the hang of C#, heading into one of those areas will
be much easier.

How This Book is Organized
This book is divided into six parts. Part 1 describes what you need to get going. You��ll learn how to get set
up with the free software that you need to write code and make your first C# program.

Part 2 describes the basics of procedural programming �� how to tell the computer, step -by-step, what to
do to accomplish tasks. It covers things like how information is stored (in variables) , how to make
decisions, loop over things repeatedly, and put blocks of code that accomplish specific tasks into a
reusable chunk called a method. It also introduces the type system of the C# language , which is one of
the key pieces of C# programming .

Part 3 goes into object -oriented programming, introducing it from the ground up, but also getting into a
lot of the details that make it so powerful. Chapter 20, in my opinion, is the critical point of the book. By
Chapter 19, we ��ve introduced all of the key concepts needed to make almost any C# program, including
classes, which is the most powerful way C# provides fo r building your own data types. Chapter 20
contains the task (and solution) to making a simple but complete game of Tic -Tac-Toe, which will put all of
the knowledge from the earlier chapters to the test. Everything we do after this chapter is simply fleshi ng
out details and giving you better tools to get specific jobs done faster.

Part 4 covers some common programming tasks , as well as covering some of the more advanced features
of C#. For the most part, these topics are independent of each other, and once you��ve made it past t hat
critical point in Chapter 20, you should be able to do these at any time you want.

How This Book is Organized xxi

Part 5 changes gears, and covers more details about Vis ual Studio, which you use to create C# programs ,
additional information about the .NET Platform , and some tools, tricks, and information you can use as
you program.

Finally, Part 6 wraps up the book with some larger scale programs for you to try making , a chapter on
where to go next as you continue to learn C# , and a glossary of words that are defined throughout the
book, whi ch you can use as a reference when you run across a word or phra se that you are unfamiliar
with or have forgotten about.

Try It Out!
Scattered throughout the book are a variety of sections labeled Try It Out! These sections give you simple
challenge problem s and quizzes that give you a chance to play around with the new concepts in the
chapter and test your understanding . If this were a class, these would be the homework.

The purpose of these Try It Out! sections is to help you get some real world practice with the new
information. You can ��t learn to drive a car by reading the owner ��s manual, and you can ��t learn to program
without writing any code.

I strongly encourage you to spend a t least a few minutes doing each of these challenges to help you
understand what you ��re reading and ensure that you ��ve learned what you needed to.

If you have something else you want to explore with the new con cepts instead of the c hallenges I ��ve
provided, all the better. The only thing better than playing around with this stuff is doing something with
it that you have a personal interest in . If you want to explore a different direction, go for it!

At the end of the book, in Chapter 50, I have an entire chapter full of larger, tougher challenge problems
for you to try out. These problems involve combining concepts from many chapters together into one
program. Going through some or all of these as you ��re finishing up will be a great way to make sure you ��ve
learned the most important things you needed to.

The most important thing to remember about these Try It Out! section s is that the answers are all online. If
you get stuck, or just want to compare your solution to someone else ��s, you can see mine at
starboundsoftware.com/books/c -sharp/try -it -out / . I should point out that just because your solution
is differ ent from mine (or anyone else ��s) doesn ��t necessarily mean it is wrong. That ��s one of the best parts
about programming �� there ��s always more than one way to do something.

In a Nutshell
At the beginning of each chapter , I summarize what it contains. These sections are desig ned to do the
following:

�x Summarize the chapter to come.
�x Show enough of the chapter so that an experienced programmer can know if they already know

enough to skip the chapter or if they need to study it in depth.
�x Review the chapter enough to ensure that you got what you needed to from the chapter. For

instance, imagine you ��re about to take a test on C#. You can jump from chapter to chapter,
reading the In a Nutshell sections, and anything it describes that you didn ��t already know, you can
then go into the ch apter and review it.

In Depth
On occasion, there are a few topics that are not critical to your understand ing of C#, but they are an
interesting topic that is related to the things you ��re learning. You ��ll find this information pulled out int o In
Depth sections. These are never required reading, so if you ��re busy, skip ahead. If you ��re not too busy, I
think you ��ll find this additional information interesting, and worth taking the time to read.

xxii Introduction

Glossary
As you go through this book, you ��re going to learn a ton of new words and phrases. Especially if you ��re
completely new to programming in general. At the back of this book is a glossary that contains the
definitions for these words. You can use this as a reference in case you forget what a word means, or as
you run into new concepts as you learn C#.

Getting the Most from This Book

For Programmers
If you are a programmer, particularly one who already knows a programming language that is related to
C# (C, C++, Java, Visual Basic .NET, etc.) learning C# is going to be relatively easy for you.

C# has a lot in common with all of these languages. In fact, it ��s fair to say that a ll programming languages
affect and are inspired by other languages, because they evolve over time. C# looks and feels like a
combination of Jav a and C++, both of which have roots that go back to the C programming language .
Visual Basic .NET (VB.NET) on the other hand, looks and feels quite different from C# (it��s based on Visual
Basic, and Basic before that) but because both C# and VB.NET are des igned and built for the .NET
Platform , they have many of the same features, and there ��s almost a one -to -one correspondence between
features and keywords.

Because C# is so closely tied to these other languages, and knowing that many people may already know
something about these other languages, you ��ll see me point out how C# compares to these ot her
languages from time to time .

If you already know a lot about programming, you ��re going to be able to move quickly through this book,
especially the beginning, whe re you may find very few differences from languages you already know . To
speed the process along, read the In a Nutshell section at the start of the chapter. If you feel like you
already know everything it describes, it ��s probably safe to skip to the next chapter.

I want to mention a couple o f chapters that might be a little dangerous to skip. Chapter 6 introduces the
C# type system, including a few concepts that are key to building types throughout the book. Also,
Chapter 16 is sort of a continuation on the type system, describing value and reference types. It ��s
important to understand the topics covered in those chapters. Those chapters cover some of the
fundamental ways that C# is different from these other languages, so don ��t skip them.

For Busy People
One of the best parts about this book is that you don ��t need to read it all. Yes, that ��s right. It ��s not all
mandatory reading to get started with C#. You could easily get away with only reading a part of this book,
and still understand C#. In fact, not only unde rstand it, but be able to make just about any program you
can dream up . This is especially true if you already know a similar programming language.

At a minimum, you should start at the beginning and read through Chapter 20. That covers the basics of
programming, all the way up to and including an introduction to making your own classes. (And if you ��re
already a programmer, you should be able to fly through those in troductory chapters quickly .)

The rest of the book could theoretically be skipped, though if you try to use someone else ��s code, you��re
probably going to be in for some surprises.

Once you ��ve gone through those 20 chapters, you can then come back and read the rest of the book in
more or less any order that you want, as you have extra time.

For Beginners
If you ��ve never done any programming before, be warned: learning a programming language can be hard
work. The concepts in the first 20 chapters of this book are the most important to understand. Take

I Genuinely Want Your Feedback xxiii

whatever tim e is necessary to really feel like you understand what you ��re seeing in these chapters . This
gets you all of the basics, and gets you up to a point where you can make your own types using classes.
Like with the For Busy People section above, Chapter 20 is the critical point that you ��ve got to get to, in
order to really understand C#. At that point, you can probably make any program that you can think of,
though the rest of the book will cover additional tools and tricks that will allow you to do this more easily
and more efficiently.

After reading through these c hapters , skim through the rest of the book, so that you ��re aware of what else
C# has. That ��s an important step if you ��re a beginn er. It will familiarize you with what C# has to offer, and
when you eithe r see it in someone else ��s code or have a need for it, you ��ll know exactly where to come
back to. A lot of these additional details w ill make the most sense when you have an actual need for it in a
program of your own creation . After a few weeks or a few months, when you��ve had a chance to make
some programs on your own, come back and go through the rest of the book in depth.

I Genuinely Want Your Feedback
Writing a book is a huge task, and no one has ever finished a huge task perfectly. There ��s the possibility of
mistakes, plenty of chances to inadvertently leave you confused, or leaving out important details. I was
tempted to keep this book safe on my hard drive, and never give it out to the world, because then those
limitations wouldn ��t matter. But alas, my wife wouldn ��t let me follow Gandalf ��s advice and �
keep it secret;
keep it safe, �� and so now here it is in your hands.

If you ever find any problems with this book, big or small, or if you have any suggestions for improving it,
I��d really like to know. After all, books are a lot like software, and there ��s always the opportunity for future
versions that improve upon the current one . Also, if you have positive things to say about the book, I ��d
love to hear about that too. There ��s nothing quite like hearing that your hard work has helped somebody.

To give feedback of any kind , please visit starboundsoftware.com/books/c -sharp/feedback .

This Book Comes with Online Content
On my web site, I have a small amount of additional content that you might find useful. For starters, as
people submit feedback, like I described in the last section, I will post corrections and clarifications as
needed on this book ��s errata page: starboundsoftware.com/books/c -sharp/errata .

Also on my site, I will post my own answers for all of the Try It Out! sections fou nd throughout this book. If
you get stuck, or just want something to compare your answers with, you can visit this book ��s site and see
a solution. To see these answers, go to: starboundsoftware.com/books/c -sharp/try -it -out / .

The website also contains some extra problems to work on, beyond the ones contained in this book. I ��ve
been frequently asked to add more problems to the book t han what it currently has. Indeed, t his version
contains more than any previous version. B ut at the same time, most people don ��t actually do these
problems. To avoid drowning out the actual content with more and more problems, I ��ve provided
additional problems on the website . This felt like a good compromise. These can be found at
starboundsoftware.com/books/c -sharp/additional -prob lems .

Additional information or resources may be found at starboundsoftware.com/books/c -sharp .

Part 1
Getting Started

The world of C# programming lies in front of you, waiting to be explored . In Part 1 of this book, within
just a few short chapters , we��ll do the following:

�x Get a quick introduction to what C# is (Chapter 1).
�x Get set up to start making C# programs (Chapter 2).
�x Write our first program (Chapter 3).
�x Dig into the fundamental parts of C# programming (Chapters 3 and 4).
�x

1
1 The C# Programming

Language

I��m going to start off this book with a very brief introduction to C#. If you ��re already a programmer, and
you��ve read the Wikipedia pages on C# and the .NET Framework , skip ahead to the next chapter.

On the other hand, if you ��re new to programming in general, or you ��re still a little vague on what exactly
C# or the .NET Platform is, then this is the place for you.

I should point out that we ��ll get into a lot of detail about how th e .NET Platform functions, and what it
gives you as a programmer in Chapter 44. This chapter just provide s a quick overview of the basics.

What is C#?
Computers only understand binary : 1��s and 0��s. All of the information they keep track of is ultimately
nothing more than a glorified pile of bits. All of the instructions they run and all of the data they process
are binary.

But humans are notoriously bad at doing anything with a giant pile of 1 ��s and 0��s. So rather than doing
that, we created programming languages, which are based on human languages (usually English) and
structured in a way that allows you to give instructions to the computer. These i nstructions are called
source code, and are simple text files.

When the time is right, your source code will be handed off to a special program called a compiler, which
is able to take it and turn it into the binary ����s and ����s that the computer understand s, typically in the form

In a Nutshell
�x Describes the general idea of programming, and goes into more details about why C# is a

good language.
�x Describes the core of what the .NET Platform is.
�x Gives some history on the C# programming language for context.

4 Chapter 1 The C# Programming Language

of an EXE file. In this sense, you can think of the compiler as a translator from your source code to the
binary machine instructions that the computer knows.

There are thousands, maybe tens of thousands of prog ramming languages, each good at certain things,
and less good at other things. C# is one of the most popular . C# is a simple general -purpose
programming language, meaning you can use it to create pretty much anything, including desktop
applications, server -side code for websites, and even video games.

C# provides an excellent balance between ease of use and power. There are other languages that provide
less power and are easier to use (like Java) and others that provide more power, giving up so me of its
simplicity (like C++). Because of the balance it strikes, it is the perfect language for nearly everything that
you will want to do, so it ��s a great language to learn, wh ether it ��s your first or your tenth .

What is the .NET Platform ?
C# relies heavily on something called the .NET Platform . It is also commonly also called the .NET
Framework, though we ��ll make a subtle distinction between the two later on . The .NET Platform is a large
and powerful platform, which w e��ll discuss in detail in Chapter 44. You can go read it as soon as you ��re
done with this chapter, if you want.

The .NET Platform is vast, with many components, but two stand out as the most central . The first part is
the Common Language Runtime, often abbreviated as the CLR. The CLR is a software program that takes
your compiled C# code and runs it. When you launch your EXE file, the CLR will start up and begin taking
your code and translating it into the optimal binary instructions for the physical computer that it is
running o n, and your code comes to life.

In this sense, the CLR is a middle -man between your code and the physical com puter. This type of
program is called a virtual machine. We ��ll get into more of the specifics in Chapter 44. For now, it ��s only
important to know that the .NET Platform itself, specifically the CLR runtime, play a key role in running
your application �� and in making it so your application can run on a wide variety of computer
architectures and operating systems.

The second major component of the .NET Platform is the .NET Standard Library . The Standard Library is
frequently called the Base Class Library . The Standard Library is a massive collection of code tha t you can
reuse within your own programs to accelerate the development of whatever you are working on. We will
cover some of the most important things in the Standard Library in this book, but it is huge, and deserves
a book of its own. More detail on the Standard Library and the Base Class Library can be found in Chapter
44.

Built on top of the .NET Standard Library is a collection of app models. An app model is another large
library designed for a specific type of application. This includes things like WPF and Windows Forms for
GUI applications, ASP.NET for web development, and Xamarin for iOS and Android development. Game
frameworks or engines lik e MonoGame and Unity could also be considered app models, though these are
not maintained directly by Microsoft.

This book, unfortunately, doesn ��t cover these app models to any serious extent. There are two reasons for
this. Each app model is gigantic. You could write multiple books about each of these app models (and
indeed, there are many books out there). Trying to pack them all into this book would make it a 5000 page
book.

Second, the app model s are, true to their name, specific to a certain type of application. This means that
the things that are important to somebody doing desktop development are going to be wildly different
from somebody doing web development. This book focuses on the C# langu age itself, and the aspects of

C# and .NET Versions 5

the .NET Platform that are useful to everybody. Once you ��ve finished this book, you could then proceed on
to other books that focus on specific app models. (Those books all generally assume you know C#
anyway.)

We will cover how the .NET Platform is organized and how it functions in depth in Chapter 44.

C# and .NET Versions
C# has gone through quite a bit of evolution over its history. The first release was in 2002, and established
the bulk of the language features C# still has today.

A little over a year later, in 2003, C# 2.0 was released, adding in a lot of other big and powerful features,
most of which will get quite a bit of attenti on in this book (generics, nullable types, delegates, static
classes, etc.)

C# 3.0 expanded the language in a couple of very specific directions: LINQ and lambdas, both of which get
their own chapters in this book.

The next two releases were somewhat small er. C# 4.0 added dynamic typing , as well as named and
optional method arguments. C# 5.0 added greatly expanded support for asynchronous programming .

In the C# 5 era, a new C# compiler was introduced: Roslyn. This compiler has a number of notable
features: it ��s open source, it ��s written in C# (written in the language it ��s for), and it is available while your
program is running (so you can compile additional code dynamically). Something about its construction
also allows for people to more easily tweak and ex periment with new features, which led to the features
added in C# 6.0 and 7.0 .

C# 6.0 and 7.0 added a whole slew of little additions and tweaks across the language. While previous
updates to the language could usually b e summed up in a single bullet point or two, and are given their
own chapters in this book, the new features in C# 6.0 and 7.0 are small and numerous. I try to point out
what these new features are throughout this book, so that you are aware of them.

Alongside the C# language itself, both Vis ual Studio and the Standard Library have both been evolving
and growing. This book has been updated to work with Vis ual Studio 2017 and C# 7.0 at the time of
publishing.

Future versions will, of course, arrive before long. Based on past experience, it ��s a safe bet that everything
you learn in this book will still apply in future versions .

2
2 Installing Visua l Studio

To make your own programs, people usually use a program called an Integrated Development Environment
(IDE). An IDE combines all of the tools you will commonly need to make software, including a special text
editor designed for editing source code files, a compiler, and other various tools to help you manage the
files in your project.

With C# , nearly every one chooses to use some variation of Visual Studio, made by Microsoft. There are a
few different levels of Visual Studio, ranging from the free Community Edition, to the high -end Enterprise
Edition. In this chapter, I ��ll guide you through the process of de termining which one to choose.

As of the time of publication of this book, the latest version is the 201 7 family. There will inevitably be
future releases, but the bulk of what ��s described in this book should still largely apply in future versions.
While n ew features have been added over time, the fundamentals of Visual Studio have remained the
same for a very long time now.

There are three main flavors of Visual Studio 201 7. Our first stop will be to look at the differences among
these, and I ��ll point out one that is most likely your best choice, getting started. (It ��s free, don ��t worry!) I ��ll
then tell you how to download Visual Studio and a little about the installation process. By the end of this
chapter, you ��ll be up and running, ready to start doing so me C# programming!

In a Nutshell
�x To program in C#, we will need a program that allows us to write C# code and run it . That

program is Microsoft Visual Studio.
�x A variety of versions of Visual Studio exists, including the free Community Edition, as well as

several higher tiers that offer addi tional features at a cost.
�x You do not need to spend money to make C# programs.
�x This chapter walks you through the various versions of Visual Studio to help you decide which

one to use, but as you are getting started, you should consider the free Visual Stu dio 2017
Community Edition.

Versions of Visual Studio 7

Version s of Visual Studio
Visual Studio 201 7 comes in three editions: Community , Professional , and Enterprise . While I��m ultimately
going to recommend the Community Edition (it ��s free, and it still allows you to make and sell commercial
applications with it) it is worth briefly considering the differences between the three.

From a raw featur e standpoint, Community and Professional are essentially the same thing. Enterprise
comes with some nice added bonuses , but at a significantly higher cost. These extra features generally
are non -code-related, but instead deal with the surrounding issues, l ike team collaboration, testing,
performance analysis, etc. While nice, these extra features are probably not a great use of your money as
you��re learning, unless you work for a company or attend school at a place that will buy it for you.

Now that I ��ve pushed you away from Enterprise as a beginner, the only remaining question is what to
actually use. And to answer that, we need to compare the Community Edition to the Professional Edition.

Community and Professional are essentially the same product with a different license. Microsoft wants to
make Visual Studio available to everybody, but they still want to be able to bring in money for their
efforts. With the current licensing model, they ��ve managed to do that pretty well.

While Professional costs roughly $500, Community is free. But the license prevents certain people (the
ones with tons of money) from using it. While the following interpretation is not legally binding, the
general interpretation of the Community license is essentially this:

You can use it to make software, both commercially and non -commercially, as long as you don ��t fit in one
of the following categories:

�x You have 5+ Visual Studio developers in your company. (If you��re getting it for personal home use
or moonlighting projects , you don ��t count the place you work for. You have 1 developer.)

�x You have 250+ computers or users in your company.
�x You have a gross income of $1,000,000.

If any of the above apply, you don ��t qualify for the Community license, and you must buy Professional. But
then agai n, if any of those apply to you, you probably have the money to pay for Professional anyway.

There are a couple of exceptions to that:

�x You��re a student or educator, using it solely for educational uses.
�x You��re working solely on open source projects.

In sho rt, for essentially everybody reading this book, you should be able to either use Community, or
you��re working somewhere that can afford to buy Professional or Enterprise for you .

This makes the decision simple: you will almost certainly want Visual Studio Community for now .

The Installation Process
Visual Studio can be downloaded from https://www.visualstudio.com/downloads . This will actually
install the Visual Studio Installer, which is a separate program from Visual Studio itself. (It sounds
complicated, but the Visual Studio Installer is a powerful and useful product in its own right.)

Once you get the installer downloaded and running, you will see a screen that look s similar to this:

https://www.visualstudio.com/downloads

8 Chapter 2 Installing Visual Studio

If instead of the above, you see a screen that lists Visual Studio Community, Professional, and Enterprise,
choose to install Visual Studio Community (or the option that is the one you need) and you will arrive at
this screen.

Visual Studio, with every single bit of functionality, is a lumbering behemoth of a product. Starting with
Visual Studio 2017, the product and the installer got a massive rewrite to allow you to install only the
components you actually care about. The screen that you see in the previous image is the part of the
installer that allows you to choose what components you want.

By default, nothing is checked, which would give you a very barebones Visual Studio. That ��s probably not
what you want. Instead, we need to check the items that we want to include.

For this book, you will want to check the box for .NET desktop development on the Workloads tab.
Feel free to look through the rest of the things and check anything else you might want to play around
with at some point.

The installer contains three tabs at the top. The Individual components tab lets you pick and choose
individual items that you might want a la carte. The Workloads tab will pre -select groups of items on the
Individual components tab, to give you groups of items that are well suited for making specific types of
applications. The Language packs tab is for choosing languages for Visual Studio. English is included by
default, but check the box on other languages if you want to be able to use a different languag e like
French or Russian.

When you have the components you want (at a minimum, .NET desktop development) hit the Install
button and your selected components will be installed for you.

You may get an icon for Visual Studio on your desktop, but you ��ll also always be able to find Visual Studio
in your Start Menu under �
Visual Studio ������������

Also, if you ever want to modify the components that you ��ve installed (either to remove unused ones or
add new ones) you can find �
Visual Studio Installer ����on your start men u as well, and simply re -run it to
modify your Visual Studio settings and add or remove components.

Visual Studio will ask you to sign in with a Microsoft account at some point. If you don ��t have one, you can
follow their instructions to make one.

Starting in the next chapter and throughout the rest of this book, we ��ll cover all sorts of useful tips and
tricks on using Visual Studio. Towards the end of this book, in Part 5, we ��ll get into Visual Studio in a little

C# Programming on Mac and Linux 9

more depth. Once you get through the next couple of chapters, you can jump ahead to that part
whenever you ��re ready for it . You don��t have to read through the book in order.

This book will use screenshots from Visual Studio 2017 Community. You may see some slight differences
depending on which version of Visual Studio you ��re using and what add -ons you have active. But all of the
things we talk about in this book will be available in all editions.

C# Programming on Mac and Linux
If you are interested in doing C# programming on a Mac or on Linux , you��re still in l uck.

Your first option is Visual Studio Code , which can be grabbed from https://code.visualstudio.com . Visual
Studio Code is a lightweight version of Visual Studio that runs on Window s, Mac, and Linux. Visual Studio
Code is missing a number of significant features that this book talks about, but it does support the basics
of editing and compiling your code.

Your second option is Xamarin Studio (http://xamarin.com/studio), which works on macOS. Xamarin
Studio is a powerful, full IDE similar to Visual Studio. In fact, Microsoft is releasing Visual Studio for Mac,
but it is essentially just Xamarin Studio rebranded. (Xamarin is owned by Microsoft, so they ��re on the same
team.)

Try It Out!
Install Visual Studio. Take the time now to c hoose a version of Visual Studio and install it, so that
you��re ready to begin making awesome programs in the next chapter.

https://code.visualstudio.com/

3
3 Hello World: Your First C#

Program

In this chapter we��ll make our very first C# program. Our first program needs to be one that simply prints
out some variation of �
Hello World! �� or we ��ll make the programming gods mad. It ��s tradition to make your
first program print out a simple message like this when ever you learn a new language. It ��s simple, yet still
gives us enough to see the basics of how the programming language works. Also, it gives us a chance to
compile and run a program, with very litt le chance for introducing bugs.

So that ��s where we ��ll start . We��ll create a new project and add in a single line to display "Hello World! " Once
we��ve got that, we ��ll compile and run it, and you ��ll have your very first program!

After that, we ��ll take a minute and look at the code that you have written in more detail before moving on
to more difficult, but infin itely more awesome stuff in the future!

Creating a New Project
Let ��s get started with our first C# program ! Open up Visual Studio, which we installed in Chapter 2 .

In a Nutshell
�x Start a new C# Console Application by going to File > New > Project... , choosing the Console

Application template, and giving your project a name.
�x Inside of the Main method, you can add code to write out stuff using a statement like

Console.WriteLine("Hello World! ");
�x Compile and run your program with F5 or Ctrl + F5 .
�x The template includes code that does the following:

�x using directives make i t easy to access chunks of previously written code in the
current program.

�x The namespace block puts all of the contained code into a single collection.
�x The code we actually write goes into the Program class in a method called Main ,

which the C# compiler recognizes as the starting point for a program.

A Brief Tour of Visual Studio 11

When the program first opens, you will see the Start Page come up . To create a new project, select File >
New > Project... from the menu bar. (Note you can also search for the Console Application template on
the Start Page directly.)

Once you have done this, a dialog will appear asking you to specify a project type and a name for the
project . This dialog is shown below:

On the left side, you will see a few categories of templates to choose from . Depending on what version of
Visual Studio you have installed and what plugins and extensions you have , you may see different
categories here, but the one you ��ll want to select is the Visual C# categor y, which will list all C# -related
templates that are installed.

Once that is selected, i n the list in the top -center , find and select the Console Application (.NET
Framework) template . The Console Application template is the simplest template and it is exa ctly where
we want to start. For all of the stuff we will be doing in this book , this is the template to use .

As you finish up this book, if you want to start doing things like making programs with a graphical user
interface (GUI), game development , smart phone app development, or web -based development, you will
be able to put these other templates to good use.

At the bottom of the dialog , type in a name for your project . I��ve called mine �
HelloWorld .�� Your project
will be saved in a directory with this name . It doesn ��t matter what you call a project, but a good name will
help you find it later . By default, Visual Studio tries to call your programs �
ConsoleApplication1 �� or
�
ConsoleApplication2. �� If you don ��t choose a good name, you won ��t know what each of these do . By
default, projects are saved under your Documents directory (Documents/Visual Studio 201 7/Projects/).

Finally, press the OK button to create your project !

A Brief Tour of Visual Studio
Once your proj ect has loaded, it is worth a brief discussion of what you see before you . We��ll look in d epth
at how Visual Studio works later on (Chapter 45) but it is worth a brief discussion right now.

12 Chapter 3 Hello World: Your First C# Program

By this point, you should be looking at a screen tha t looks something like this :

Depending on which version of Visual Studio you installed, you may see some slight differences, but it
should look pretty similar to this.

In the center should be some text that starts out with using System; . This is your program ��s source code !
It is what you ��ll be working on . We��ll discuss what it means , and how to modify it in a second . We��ll spend
most of our time in this window .

On the right side is the Solution Explorer . This shows you a big outline of all of the files contained in your
project, including the main one that we ��ll be working with, called �
Program.cs ��. The *.cs file extension
means it is a text file that contains C# code . If you double -click on any item in the Solution Explorer , it will
open in the main editor window . The Solution Explorer is quite important, and we ��ll use it frequently.

As you work on your project, other windows may pop up as th ey are needed . Each of these can be closed
by clicking on the ��X�� in the upper right corner of the window.

If, by chance, you are missing a window that you feel you want, you can always open it by finding it on
either the View menu or View > Other Windows . For right now, if you have the main editor window open
with your Program.cs file in it, and the Solution Explorer , you should be good to go.

Building Blocks: Projects , Solutions , and Assemblies
As we get started, it is worth defining a few important terms that you ��ll be seeing throughout this book. In
the world of C#, you ��ll commonly see the words solution, project, and assembly, and it is worth taking the
time upfront to explain what they are, so that you aren ��t lost.

These three words describe the code t hat you ��re building in different ways. We ��ll start with a project . A
project is simply a collection of source code and resource files that will all eventually get built into the
same executable program . A project also has additional information telling the compiler how to build it.

When compiled, a project becomes an assembly. In nearly all cases, a single project will become a single
assembly. An assembly shows up in the form of a n EXE file or a DLL file. These two different extensions
represent two different types of assemblies, and are built from two different types of projects (chosen in
the project ��s settings).

Modifying Your Project 13

A process assembly appears as an EXE file. It is a complete program, and has a starting point defined,
which the computer knows t o run when you start up the EXE file. A library assembly appears as a DLL file.
A DLL file does not have a specific starting point defined. Instead, it contains code that other programs
can access and reuse on the fly.

Throughout this book, we ��ll be primarily creating and working with projects that are set up to be process
assemblies that compile to EXE files, but you can configure any project to b e built as a library assembly
(DLL) instead.

Finally, a solution will combine multiple projects together to accomplish a complete task or form a
complete program. Solutions will also contain information about how the different projects should be
connected to each other. While solutions can contain many projects, most simple programs (including
nearly everything we do in this book) will only need one . Even many large programs can get away with
only a single project.

Looking back at what we learned in the last section about the Solution Explorer, you ��ll see that the
Solution Explorer is showing our entire solution as the very top item, which it labels �
Solution ��HelloWorld ��
(1 project). �� Immediately underneath that, we see the one project that our solution contains: �
HelloWorld .��
Inside of the project are all of the settings and files that our project has, including the Program.cs file that
contains source code that we ��ll soon start editing.

It ��s important to keep the solution and project separated in your head. They both have the same name
and it can b e a little confusing. Just remember the top node is the solution, and the one inside it is the
project.

Modifying Your Project
We��re now ready to make our program actually do something. I n the center of your Visual Studio window ,
you should see the main t ext editor , containing text that s hould look identical to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

In a minute we��ll discuss wha t all of that does, but for now let ��s go ahead and make our first change ��
adding something that will print out the message �
Hello World! ��

Right in the middle of that code, you ��ll see three lines that say static void Main(string[] args) then a
starting curly brace (��{��) and a closing curly brace (��}��). We want to add our new code right between the two
curly braces.

Here��s the line we want to add:

Console.WriteLine (" Hello World! ");

So now our program ��s full code should look like this:

14 Chapter 3 Hello World: Your First C# Program

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(" Hello World! ");
 }
 }
}

We��ve completed our first C# program ! Easy, huh?

Compiling and Running Your Project
Your computer doesn ��t magically understand what you ��ve written . Instead, i t understands special
instructions that are composed of 1 ��s and 0��s called binary. Fortunately for us, Visual Studio includes a
thing called a compiler. A compiler will take the C# code that we ��ve written and turn it into binary that the
computer understands.

So our next step is to comp ile our code and run it . Visual Studio will make this easy for us.

To start t his process, press F5 or choose Debug > Start Debugging from the menu.

There! Did you see it ? Your program flashed on the screen for a split second ! (Hang on... we ��ll fix that in a
second. Stick with me for a moment.)

We just ran our program in debug mode, which means that if something bad happens while your
program is running, it won ��t simply crash . Instead, Visual Studio will notice the problem , stop in the middle
of what ��s going on , and show you the problem that you are having, allowing you to debug it . We��ll talk
more about how to a ctually debug your code in Chapter 48.

So there you have it ! You��ve made a program, compiled it, and executed it!

If it doesn ��t compile and execute, double check to make sure your code looks like the code above.

Help ! My program is running, but disappear ing before I can see it !
You likely just ran into this problem when you executed your program . You push F5 and the program
runs, a litt le black console window pops up for a split second before disappearing again , and you have no
clue what happened.

There��s a good reason for that . Your progr am ran out of things to do, so it finished and closed on its own .
(It thinks it ��s so smart, clo sing on its own like that.)

Try It Out!
Hello World! It ��s impossible to understate how important it is to actually do the stuff outlined in this
chapter. Simply reading text just doesn ��t cut it. In future chapters, most of these Try It Out! sections
will contain extra things to do, beyond the things described in the actual body of the chapter. But for
right now, it is v ery important that you simply go through the process explained in this chapter. The
chapter itself is a Try It Out! So follow through this chapter, one step at a time, and make sure you ��re
understanding the concepts that come up, at least at a basic level.

Compiling and Running Your Project 15

But we ��re really going to want a way to make it so that doesn��t happen . After all, we ��re left wondering if it
even did what we told it to . There are two solutions to this, each of which has its own strengths and
weaknesses.

Approach #1 : When you run it without debugging , console programs like this will always pause before
closing. So one option is to run it without debugging . This option is called Release Mode. We��ll cover this in
a lit tle more depth la ter on, but the bottom line is that your program runs in a streamlined mode which is
faster, but if something bad happens, your program will just die, without giving you a chance to debug it .

You can run in release mode by simply pressing Ctrl + F5 (instead of just F5). Do this now, and you ��ll see
that it prints out your �
Hello World! �� message, plus another message that says �
Press any key to
continue... �� which does exactly what it says and waits for you before closing the program. You can also
find this under Debug > Start Without Debugging on the menu.

But there ��s a distinct disadvantage to running in release mode. We��re no longer running in debug mode,
and so if something happens with your program while it is running, your applic ation will crash and die .
(Hey, just like all of the ot her �
cool �� programs out there!) Which brings us to an alternative approach:

Approach #2 : Put another line of code in that makes the program wait before closing the program . You
can do this by simply a dding in the following line of code, right below where you put the
Console.WriteLine("Hello World! "); statement:

Console.ReadKey();

So your full code, if you use this approach, would look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(" Hello World! ");
 Console.ReadKey();
 }
 }
}

Using this approach, there is one more line of code that you have to add to your program (in fact, every
console app lication you make), which can be a little annoying . But at least with this approach, you can still
run your program in debug mode, which you will soon discover is a really nice feature.

Fortunately, t his is only going to be a problem with console apps . That ��s what we ��ll be doing in this book,
but b efore long, you ��ll probably be making windows apps, games, or awesome C# -based websites, and
this problem will go away on its own . They work in a different way, and this won ��t be an issue there .

Try It Out!
See Your Program Twice. I��ve described two approaches for actually seeing your program execute.
Take a moment and try out each approac h. This will give you an idea of how these two different
approaches work. Also, try combining the two and see what you get. Can you figure out why you need
to push a key twice to end the program?

16 Chapter 3 Hello World: Your First C# Program

A Closer Look at Your Program
Now that we ��ve got our progra m running, let ��s take a minu te and look at each line of code in the program
we��ve made . I��ll explain what each one does so that you ��ll have a basic unde rstanding of everything in your
simple Hello World program.

Using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

The first few lines of your program al l start with t he keyword using . A keyword is simply a reserved word,
or a magic word that is a built -in part of the C# programming language . It has special meaning to the C#
compiler, which it uses to do something special. The using keyword tells the compiler that there is a
whole other pile of code that someone made that we want to be able to access. (This is actually a bit of a
simplification, and we ��ll sort out the details in Chapter 27.)

So when you see a statement lik e using System; you know that there is a whole pile of code out there
named System that our code wants to use . Without this line, the C# compiler won ��t know where to find
things and it won ��t be able to run your program . You can see that there are five usin g directives in your
little program that are added by default . We can leave these exactly the way they are for the near future .

Namespaces, Classes, and Methods
Below the using directives , you��ll see a collection of curly braces (��{�� and ��}��) and you ��ll see the keywords
namespace , class , and in the middle, the word Main . Namespaces, classes, and methods (which Main is
an example of) are ways of grouping related code together at various levels . Namespaces are the largest
grouping, classes are smaller, and methods are the smallest . We��ll discuss each of these in great depth as
we go through this book, but it is worth a brief introduction now . We��ll start at the smallest and work our
way up.

Methods are a way of consolidating a single task together in a reusable block of code . In other
programming languages, methods are sometimes called functions, procedures, or subroutines. We��ll get
into a lot of detail about how to make and use methods as we go, but t he bulk of our discussion about
methods will be in Chapter 15, with some extra details in Chapter 28.

Right in the middle of the generated code, you ��ll see the following:

static void Main(string[] args)
{
}

This is a method, which happens to have the name Main . I won ��t get into the details about what
everything else on that line does yet, but I want to point out that this particular setup for a method makes
it so that C# knows it can be used as the starting point for your program. Since this is where our program
starts, the computer will run any code we put in here . For the n ext few chapters, everything we do will be
right in here.

You��ll also notice that there are quite a few curly braces in our code . Curly braces mark the start and end
of code blocks . Every starting curly brace (��{��) will have a matching ending curly brace (��}��) later on . In this
particular part, the curly braces mark the start and end of the Main method . As we discuss classes and
namespaces, you ��ll see that they also use curly braces to mark the points where they begin and end . From
look ing at the code, you can probably already see that these code blocks can contain oth er code blocks to
form a hierarchy.

Whitespace Doesn ��t Matter 17

When one thing is contained in another, it is said to be a member of it. So the Program class is a member
of the namespa ce, and the Main method is a member of the Program class.

Classes are a way of grouping together a set of data and methods that operate on that data into a single
reusable package . Classes are the fundamental building block of object -oriented programming . We��ll get
into this in great detail in Part 3, especially Chapters 17 and 18.

In the generated code, you can see the beginning of the class, marked with:

class Program
{

And later on, after the Main method it contains , you��ll see a matching closing curly brace:

}

Program is simply a name for the class . It could have been just about anything else . The fact that the
Main method is contained in the Program class indicates that it belongs to the Program class.

Namespaces are the highest level grouping of code . Many smaller programs may only have a single
namespace, while large r ones often divide the code into several namespaces based on the feature or
component that the code is used in . We��ll spend a little extra time detailing namespaces and using
directives in Chapter 27.

Looking at the generated code, you ��ll see that our Program class is contained in a namespace called
�
HelloWorld ��:

namespace HelloWorld
{
 ...
}

Once again, the fact that the Program class appears within the HelloWorld namespace means that it
belongs to that namespace , or is a member of it .

Whitespace Doesn ��t Matter
In C#, whitespace such as spaces, new lines, and tabs don ��t matter to the C# compiler . This means tha t
technically, you could write any program on a single line ! But don ��t do that . That would be a bad idea.

Instead, you should use whitespace to help make your code more readable, both for other people who
may look at your code, or even yourself a few weeks from now , when you ��ve forgotten what exactly your
code was supposed to do.

I��ll leave the decision about where to put whitespace up to you, but as an example, compare the following
pieces of code that d o the same thing:

static void Main(string
[] args) { Console
.WriteLine (
 " Hello World! ");}

static void Main(string[] args)
{
 Console.WriteLine(" Hello World! ");
}

For the sake of clarity, I ��ll use a style like the bottom version throughout this book.

18 Chapter 3 Hello World: Your First C# Program

Semicolons
You may have noticed that the lines of code we adde d all ended with semicolons (��;��).

This is how C# knows it has reached the end of a statement . A statement is a single step or instruction that
does something . We��ll be using semicolons all over the place as we write C# code.

This chapter may have seemed long, and we haven ��t even accomplished very much. That ��s OK, though . We
have to start somewhere, and this is where ever yone starts . We have now made our first C# program,
compiled it, and executed it ! And just as important, we now have a basic understanding of the starter
code that was generated for us . This really gets us off on the right foot . We��re off to a great start, but
there ��s so much more to learn!

Try It Out!
Evil Computers. In the influential movie 2001: A Space Odyssey, an evil computer named HAL 9000
takes over a Jupiter -bound spaceship, locking Dave, the movie ��s hero, out in space. As Dave tries to
get back in, to the ship, he tells HAL to open the pod bay doors. HAL ��s response is "I ��m sorry, Dave. I ��m
afraid I can ��t do that." Since we know not all computers are friendly and happy to help people, modify
your Hello World program to say HAL 9000 ��s famous words, instead of "Hello World!"

4
4 Comments

In this short chapter we��ll cover the basics of comments . We��ll look at what they are, why you should use
them, and how to d o them . Many programmers (even many C# books) de -emphasize comments, or
completely ignore them. I��ve decided to put them front and center, right at the beginning of the book ��
they really are that important.

What is a Comment?
At its core, a comment is text that is put somewhere for a human to read . Comments are ignored entirely
by the computer.

Why Should I Use Comments?
I mentioned in the last chapter that whitespace should be used to help make your code more readable.
Writing readable and understandable code is a running theme you ��ll see in this book . Writing code is
actually far easier than reading it, or trying understanding what it does . And believe it or not, you ��ll
actually spend far more time reading code than writing it. You wil l want to do whatever you can to make
your code easier to read. Comments will go a very long way towards making your code more readable
and understandable.

You should use comments to describe what you are doing so that when you come back to a piece of code
that you wrote after several months (or even just days) you ��ll know what you were doing.

Writing comments �� wait, let me clarify �� writing good comments is a key part of writing good code .
Comments can be used to explain tricky sections of code, or explain wh at th ings are supposed to do. T hey

Quick Start
�x Comments are a way for you to add text for other people (and yourself) to read. Computers

ignore comments entirely.
�x Comments are made by putting two slashes (//) in front of the text.
�x Multi -line comments can also be made by surrounding it with asterisks and slashes, like this:

/* this is a comment */

20 Chapter 4 Comments

are a primary way for a programmer to communicate with another programmer who is looking at their
code. The other programmer may even be on the other side of the world and working for a different
company five years later!

Comments can explain what you are doing, as well as why you are doing it . This helps other
programmers, including you rself, know what was going on in your mind at the time.

In fact, even if you know you ��re the only person who will ever see your code, you should still put
comments in it . Do you remember what you ate for lunch a week ago today ? Neither do I . Do you really
think that you ��ll remember what your code was supposed to do a week after you write it?

Writing comments makes it so that you can quickly understand and remember what the code does, how it
does it, why it does it, and you can even document why you did it one way and not another.

How to Make Comments in C#
There are three basic ways to make comments in C# . For now, we ��ll only really consider two of them,
because the third applies only to things that we haven ��t looked at yet . We��ll look at the third form of
making comments in Chapter 15.

The first way to create a comment is to start a line with two slashes : // . Anything on the line following the
two slashes will be ignored by the comp uter . In Visual Studio the comments change color �� green , by
default �� to indicate that the rest of the line is a comment.

Below is an example of a comment :

// This is a comment, where I can describe what happens next...
Console.WriteLine(" Hello World! ");

Using this same thing, you can also start a comment at the end of a line of code, which will make it so the
text after the slashes are ignored:

Console.WriteLine(" Hello World! "); // This is also a comment.

A second method for creating comments is to use the slash and asterisk combined, surrounding the
comment, like this:

Console.WriteLine(" Hi! "); /* This is a comment that ends here... */

This can be used to make multi -line comments like this:

/* This is a multi - line comment.
 It spans multiple lines.
 Isn ' t it neat? */

Of course, you can do multi -line comments with the two slashes as well, it just has to be done like this:

// This is a multi - line comment.
// It spans multiple lines.
// Isn ' t it neat?

In fact, most C# programmers will probably encourage you to use the single line comment version instead
of the /* */ version, though it is up to you.

The third method f or creating comments is called XML Documentation Comments, which we ��ll discuss
later, because they ��re used for things that we haven ��t discussed yet . For more information about XML
Documentation Comments , see Chapter 15.

How to Make Good Comments 21

How to Make Good Comments
Commenting your code is easy; making good comments is a little trickier. I want to take some time and
describe some basic principles to help you make comments that will be more effective.

My first rule for making good comments is to write the comments for a particular chunk of code as soon
as you��ve got th e piece more or less complete. A few days or a weekend away from the code and you may
no longer really remember what you were doing with it. (Trust me, it happens!)

Second, write comments that add value to the code . Here��s an example of a bad comment :

// Uses Console.WriteLine to print " Hello Worl d! "
Console.WriteLine(" Hello World! ");

The code itself already says all of that . You might as well not even add it. Here��s a better version:

// Printing " Hello World! " is a very common first program to make.
Console.WriteLine(" Hello World! ");

This helps to explain why we did this instead of something else.

Third, you don ��t need a comment for every single line of code, but it is helpful to have one for every
section of related code . It��s possible to have too many comments, but the dangers of over -commenting
code matter a whole lot less than the dangers of under -commented (or completely uncommented code).

When you write comments, take the time put in anything that you or another programmer may want to
know if they come back and look at the code later . This may include a human -readable description of
what is happening, it may include describing the general method (or algorithm) you��re using to accomplish
a particular task, or it may explain why you ��re doing s omething . You may also find times where it will be
useful to include why you aren ��t using a different approach, or to warn another programmer (or yourself!)
that a particular chunk of code is tricky, and you shouldn ��t mess with it unless you really know wh at you ��re
doing.

Having said all of this, don ��t take it to an extreme. Good comments don ��t make up for sloppy, ug ly, or hard
to read code. Meanwhile nice, clean, understandable code reduces the times that you need comments at
all. (The code is the authorit y on what ��s happening, not the comments, after all.) Make the code as
readable as possible first, then add just enough comments to fill in the gaps and paint the bigger picture.

When used appropriately, comments can be a programmer ��s best friend.

Try It Out!
Comment ALL the things! While it ��s overkill, in the name of putting together everything we ��ve
learned so far, go back to your Hello World program from the last chapter and add in comments for
each part of the code , describing what each piece is for. This will be a good review of what the pieces
of that simple program do, as well as give you a chance to play around with some comments. Try out
both ways of making comments (// and /* */) to see what you like.

Part 2
The Basics

With a basic understanding of how to get started behind us, we ��re ready to dig in and look at the
fundamentals of programming in C#.

It is in this part that our adventure really gets underway. We ��ll start learni ng about the world of C#
programming, and learn about the key tools that we ��ll use to get things done.

In this section, we cover aspects of C# programming that are called �
procedural programming. ������This
means we ��ll be learning how to tell the computer, ste p-by-step, how to get things done.

We��ll look at how to:

�x Store data in variables (Chapter 5).
�x Understand the type system (Chapter 6).
�x Do basic math (Chapters 7 and 9).
�x Get input from the user (Chapter 8).
�x Make decisions (Chapter 10).
�x Repeat things multiple times (Chapter 12 and 13).
�x Create enumerations (Chapter 14).
�x Package related code together in a way that allows you to reuse it (Chapter 15).

5
5 Variables

In this chapter, we ��re going to dig straight into one of the most important parts of programming in C# .
We��re going to discuss variables, which are how we keep track of inf ormation in our programs. We��ll look
at how you create them, place different values in them, and use the value that is currently in a var iable.

What is a Variable?
A key part of any program you make, regardless of the programming language, is the ability to store
information in memory while the program is running . For example , you might want to store a player ��s
score or a person ��s name, so that you can refer back to it later or modify it.

You may remember discussing variables in math classes, but these are a little different .
In math, we talk about variables being an �
unknown quantity �� that you are supposed to
solve for . Variables in math a re a specific value that you just need to figure out .

In programming, a variable is a place in memory where you can store information. It ��s
like a little box or bucket to put stuff in . At any point in time , you can look up the
contents of the variable or rewrite the contents of the variable with new stuff . When
you do this, the variable itself doesn ��t need to change, just the contents in the box.

Each variable has a name and a type. The name is what you ��ll use in you r program when you want to read
its con tents or put new stuff in it.

In a Nutshell
�x You can think of variables as boxes that store information.
�x A variable has a name, a type, and a value that is contained in it.
�x You declare (create) a variable by stating the type and name: int number;
�x You can assign values to a variable with the assignment operator (��=��): number = 14;
�x When you declare a variable, you can initialize it as well: int number = 14;
�x You can retrieve the value of a variable simply by using the variable ��s name in your code:

Console.WriteLine(number);
�x This chapter also gives guidelines for good variable names.

26 Chapter 5 Variables

The variable ��s type indicates what kind of information you can put in it. C# has a large assortment of types
that you can use, including a variety of integer types, floating point (real valued) types, characters, strings
(text), Boolean (true/false), and a whole lot more.

In C#, types are a really big deal. Throughout this book, w e��ll spend a lot of time learning how to work with
different types, converting from one type to another, and ultimately building our own types from scratch.

In the next chapter , we��ll get into types in great detail. For now though, let ��s look at the basics of creating a
variable.

Creating Variables
Let ��s make our first variable . The process of creating a variable is called declaring a variable.

Let��s start by going to Visual Studio and creating a brand new console project, just like we did with the
Hello World project, back in Chapter 3. Inside of the Main method, add the following single line of code:

int score;

So your code should look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Thread ing.Tasks;

namespace Variables
{
 class Program
 {
 static void Main(string[] args)
 {
 int score;
 }
 }
}

Congratulations ! You��ve made your first variable ! When you declare a variable, the computer knows that it
will need to reserve a place in memory for this variable.

As you can see, when you declare a variable, you need to indicate the variable ��s name
and type. This one line has both of those parts on it. The first part you see here is int .
This is the variable ��s type. We��ll look at the different types that are ava ilable in a
minute, but for now all we need to know is that the int type is for storing integers. (In
case you don ��t remember from math class, integers are whole numbers and their
negatives, so 0, 1, 2, 3, 4, ..., and -1, -2, -3, -4,) Because we��ve made a variable that

stores integers, we know we could put the number 100 in it , or -75946. But we could not store the number
1.3483 (it ��s not an integer), and we also could not store a word like �
hamburger �� (it ��s not an integer either) .
The variable ��s type determines what kind of stuff we can put in it.

The second part of declaring a variable is giving it a name. It is important to remember that a variable ��s
name is meant for humans . The computer d oesn��t care what it is called . (In fact, once you hand it off to
the computer, it changes the name to a memory location anyway .) So you want to choose a name that
makes sense to humans, and accurately describes what you ��re putting in it . In math, we often call
variab les by a single letter (like x), but in programming we can be more precise and call it something like
score instead.

Assigning Values to Variables 27

As always, C# statements end with a ��;��, telling the computer that it has reached the end of the statement.
After this line, we have made a new variable with the name score and a type of int which we can now use !

Assigning Values to Variables
The next thing we want to do is put a value in the variable . This is called assigning a value to the variable,
and it is done using the assignment operator: �
=��. The line of code below assigns the value 0 to the score
variable we just created:

score = 0;

You can add this line of code right below the previous line we added.

This use of the equals sign is different than how it is used in math . In math, �
� ����indic ates
that two things are the same, even though they may be wr itten in different formats . In
C# and many other programming languages, it means we ��re going to take the stuff on
the r ight side of the equals sign and place it in the variable that is named on the left.

You can assign any integer value to score , and you can assign different values over time:

score = 4;
score = 11;
score = - 1564;

You can assign a value to a variable whenev er you want , as long as it is after the variable has been
declared . Of course, we haven ��t learned very powerful tools for programming yet, so �
whenever you want ��
doesn ��t mean much yet. (We��ll get there soon, don ��t worry!)

When we create a variable, we often want to give it a value right away . (The C# compiler is not a big fan of
you trying to see what ��s inside an empty variable box.) While you can declare a variable and assign it a
value in separate steps, it is also possible t o do both of them at the same time:

int theMeaningOfLife = 42;

This line creates a variable called theMeaningOfLife with the type int , and gives it a starting value of 42.

Retrieving the Contents of a Variable
As we just saw, we can use the assignment oper ator ����� ������to put values into a variable. You can also see and
use the contents of a variable, simply by using the variable ��s name. When the computer is runnin g your
code and it encounters a variable name , it will go to the variable, look up the contents i nside, and use that
value in its place.

For example, int the code below, the computer will pull the number out of the number variable and write
3 to the console window:

int number = 3;
Console.WriteLine(number); // Console.WriteLine prints lots of things, not just text.

When you access a variable, here ��s what the computer does:

1. Locates the variable that you asked for in memory.
2. Looks in the contents of the variable to see what value it contains.
3. Makes a copy of that value to use where it is nee ded.

The fact that it grabs a copy of the variable is important. For one, it means the variable keeps the value it
had. Reading from a variable doesn ��t change the value of the variable. Two, whatever you do with the

28 Chapter 5 Variables

copy won ��t affect the original. (We��ll learn more about how this works in Chapter 16, when we learn about
value and reference types.)

For example , here is some code that creates two variables and assigns the value of one to the other:

int a = 5;
int b = 2;

b = a;
a = - 3;

With what you ��ve learned so far about variables, what value will a and b have after this code runs ?

Right at the beginning of those four lines, we create two variables, one named a, and one named b. Both
can store integers, because we ��re using the int type. We also assign the value 5 to a, and 2 to b. Afte r the
first two lines, this is what we ��re looking at:

We then use the assignment operator to take the value inside of a and copy it to b:

Finally, on the last line we assign a completely new value to a:

If we printed out a and b, we would see that a is -3 and b is 5 by the time this code is finished.

How Data is Stored
Before we move into a discussion about the C# type system, we need to understand a little about how
information is stored on a computer. This is a key part of what drives the need for types in the first place.

Try It Out!
Playing with Variables. Take the little piece of code above and make a program out of it. Follow the
same steps you did in Chapter 3 when we made the Hello World program, but instead of ad ding code
to print out �
Hello World! ������add the lines above. Use Console.WriteLine , like we did before and print
out the contents of the two variables. Before you run the code, think about what you expect to be
printed out for the a and b variables. Go ahea d and run the program. Is it what you expected?

Multiple Declarations and Assignments 29

It is important to remember that computers only work with 1 ��s and 0��s. (Technically, they ��re tiny electric
pulses or magnetic fields that can be in one of two states which we label 1 and 0 .)

A single 1 or 0 is called a bit , and a grouping of eight of them is called a byte. If we do the math, this means
that a single byte can store up to a total of 256 different states.

To get more states than this, we need to put multiple bytes together. For instance, two bytes can store
65,536 possible states. Four bytes can store over 4 billion states, and eight bytes combined can store over
18 quintillion possible states.

But we need a way to take all of these states and make sense out of them. This is what the type syst em is
for. It defines how many bytes we need to store different things, and how those bits and bytes will be
interpreted by the computer, and ultimately, the user.

For example, let ��s say we want to store letters. Modern systems tend to use two bytes to sto re letters .
Programmers have assigned each letter a specific pattern of bits. For instance, we assign the capital letter
��A�� to the bit pattern 00000000 0100 0001. ��B�� is one up from that: 00000000 0100 0010. Because we��re using
two bytes, we have 65,536 different possibilities. That ��s enough to store every symbol in every language
that is currently spo ken on Earth, including many ancient languages, and sti ll have room to spare .

For each different t ype of data, we interpret the underlying bits and bytes i n a different way. The int type
that we were using earlier works like this . The int type u ses four bytes. For brevity, in this discussion, I ��m
leaving off the first three by tes, which contain all zeros for the small sample numbers we ��re using here .
The value 0 is represented with the bit pattern 00000000. The value 1 is represented with the bit pattern
00000001. 2 is represented with 00000010. 3 is 00000011. This is basically counting in a base two
numbering system , or a binary numbering system.

Other types will use their bits and bytes in other ways. We won ��t get into the specifics about how they all
work, as that ��s really beyond the scope of this book. I ��ll just point out that the way C# interprets bits and
bytes uses the same standard representations as n early every other language and computer.

Multiple Declarations and Assignments
Our earlier code for creating a variable and for assigning a value to a variable just did one per line. But
you can declare multiple variables at the same time using code like t his:

int a, b, c;

If you do this, all variables must be of the same type (int in this case). We��ll talk about types in more depth
in Chapter 6.

You can also assign the same value to multiple different variables all at the same time:

a = b = c = 10;

Most cases will probably lead you to make and assign values individually, rather than simultaneously, but
it is worth knowing that this is an option.

Good Variable Names
Before we go on, let ��s talk about how to choose good names for your variables . Not everybody agrees on
what makes a variable name good. But I ��m going to give you the rules I follow, which you ��ll discover are
pretty typical, and not t oo far off from what most experienced programmers do.

The purpose of a variable name is to give a human -readable label for the variable . Anyone who stumbles
across the variable name should be able to instantly know what information the variable contains .

30 Chapter 5 Variables

It ��s easy to write code. It ��s hard to write code that you can actually go back and read and understand . Like
comments, g ood variable names ar e an absolutely critical part of writing readable code, and it ��s not
something that can be ignored. Here are my rules:

Rule #1 : Meet C# ��s Requirements . C# has a few requirements for variable names. All variable names
have to start with a letter (a -z or A-Z) or the underscore (��_��) character, and can then contain any number
of other letters, n umbers, or the underscore character . You also cannot name a variable the same thing
as one of the reserved keywords that C# defines. These keywords are highlighte d in blue in Visual Studio,
but includes things like namespace , int , and public . Your code won ��t compile if you don ��t follow this rule.

Rule # 2: Variable names should describe the stuff you intend on putting in it. If you are putting a
player ��s score in it, call it score , or playerScore , or even plrscr if you have to, but don ��t call it jambalaya ,
p, or monkey . But speaking of plrscr ...

Rule #3 : Don ��t abbreviate or remove letters. Looking at the example of plrscr , you can tell that it
resembles �
player score ���� But if you didn ��t already know , you��d have to sit there and try t o fill in the
missing letters. Is it �
plural scar ,�� or �
plastic scrabble ��? Nope, it is �
player score .�� You just have to sit there
and study it . The one exception to this rule is common abbreviations or acronyms. HTML is fine .

Rule #4 : A good name will usually be kind of long. In math, we usually use single letters for variable
names. In programming, you usually need more than that to accurately describe what you��re trying to do.
In most cases, you ��ll probably have at least three letters. Often, it is 8 to 16. Don ��t be afraid i f it gets longer
than that. It ��s better to be descriptive than to �
save letters .��

Rule #5 : If your variables end with a number, you probably need a better name. If you ��ve got count1
and count2 , there ��s probably a better name for them. (Or perhaps an array, which we ��ll talk about later.)

Rule #6 : �
data ��, �
text ��, �
number ��, and �
item �� are usually not descriptive enough. For some rea son,
people seem to fall back to these all the time. They��re OK, but they ��re just not very descriptive. It ��s best to
come up with something more precise in any situation where you can.

Rule #7 : Make the words of the variable name stand out from each other . This is so it is easier to
read a variable name that is composed of multiple words. playerScore (with a capital ��S��) and
player_s core are both more readable than playerscore . My personal preference is the first , but both
work .

Answers: (1) name, type, value. (2) False. (3) 1. (4) answer, value1, delete_me, PI.

Try It Out!
Variables Quiz. Answer the following questions to check your understanding. When you ��re done,
check your answers against the ones below. If yo u missed something, go back and review the section
that talks about it.

1. Name the three things all variables have.
2. True /False. You can use a variable before it is declared.
3. How many times must a variable be declared?
4. Out of the following, which are legal variable names? answer, 1stValue, value1, $message,

delete -me, delete_me, PI.

This is a preview. These pages have been

excluded from the preview.

21
21 Structs

A few chapters ago we introduced classes. These are complex reference types that you can define and
build from the ground up . C# has a feature call structs or structures which look very similar to classes
organizationally, but they are value types instead of reference types.

In this chapter, we ��ll take a look at how to create a struct, as well as discuss how to decide if you need a
struct or a class. We��ll also discuss something that may throw you for a loop: all of the bui lt -in types like
bool , int , and double , are actually all aliases for structures (or a class in the case of the string type).

Creating a Struct
Creating a struct is very similar to creating a class . The following code defines a simple struct , and an
identic al class that does the same thing :

struct TimeStruct
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;

In a Nutshell
�x A struct or structure is similar to a class in terms of the way it is organized, but a struct is a

value type, not a reference type.
�x Structs should be used to store compound data (composed of more than one part) that does

not involve a lot of complicated methods and behaviors.
�x All of the simple types are structs.
�x The primitive types are all aliases for certain pre -defined structs and classes.

Structs vs. Classes 139

 }
}

class TimeClass
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;
 }
}

You can see that the two are v ery similar �� in fact the same code is used in both, with the single solitary
difference being the struct keyword instead of the class keyword .

Structs vs. Classes
Since the two are so similar in appearance, you ��re probably wondering how the two are different.

The answer to this question is simple : structs are value types, while classes are reference types . If you
didn ��t fully grasp that concept back when we discussed it in Chapter 16, it is probably worth going back
and taking a second look.

While this is a single difference in theory, this one change makes a world of difference. For example, a
struct uses value semantics instead of reference semantics. When y ou assign the value of a struct from
one variable to another, the entire struct is copied. The same thing applies for passing one to a method as
a parameter, a nd returning one from a method.

Let��s say we��re using the struct version of the TimeStruct we just saw, and did this:

public static void Main(string[] args)
{
 TimeStruct time = new TimeStruct();
 time.Seconds = 10;

 UpdateTime(time);
}

public static void UpdateTime(TimeStruct time)
{
 time.Seconds++;
}

In the UpdateTime method, we ��ve received a copy of the TimeStruct . We can modify it if we want, but
this hasn ��t changed the original version, back in the Main method. We��ve modified a copy, and the original
still has a value of 10 for seconds .

Had we used TimeClass instead, handing it of f to a method copies the reference, but that copied
reference still points the same actual object. T he change in the UpdateTime method would have affected
the time variable back in the Main method.

Like I said back when we were looking at reference types, this can be a good thing or a bad thing,
depending on what you ��re trying to do, but the important thing is that you are aware of it.

140 Chapter 21 Structs

Interestingly, while we get a copy of a value type as we move it around, it doesn ��t necessarily mean we ��ve
completely dupli cated everything it is keeping track of . Let��s say you had a struct that contained within it a
reference type, like an array, as shown below:

struct Wrapper
{
 public int[] numbers;
}

And then we used it like this:

public static void Main(string[] args)
{
 Wrapper wrapper = new Wrapper();
 wrapper.numbers = new int[3] { 10, 20, 30 };
 UpdateArray(wrapper);
}

public void UpdateArray(Wrapper wrapper)
{
 wrapper.numbers[1] = 200;
}

We get a copy of the Wrapper type, but for our numbers instance variable, that ��s a copy of the reference.
The two are still pointing to the same actual array on the heap.

Tricky little things like thi s are why if you don ��t understand value and reference types, you��re going to get
bit by them. If you ��re sti ll fuzzy on the differences, it ��s worth a second reading of Chapter 16.

There are other differences that arise because of the v alue/reference type difference:

�x Structs can��t be assigned a value of null , since null indicates a reference to nothing.
�x Because structs are value types, they ��ll be placed on the stack when they can. This could mean

faster performance because they ��re easier to get to, but if you ��re passing them around or
reassigning them a lot, the time it takes to copy them could slow things down.

Another big difference between structs and classes is that in a struct, you can ��t define your own
parameterless constructor. For both classes and structs, if you don ��t define any constructors at all, one
still exists: a default parameterless constructor . This constructor has no parameters, and is the simplest
way to create new objects of a given type, assuming there ��s no special setup logic required.

With classes, you can create your own parameterless constructor, which then allows you to replace the
default one with your own custom logic. This cannot be done with structs. The default parameterless
constructor creates new objects where everything is zeroed out. All numbers within the struct start at 0,
all bool s start at false, all references start at null , etc. While you can create other constructors in your
struct, you cannot create a parameterless one to replace this default on e.

Deciding Between a Struct and a Class
Despite the similarities in appearance, structs and classes are made for entirely different purposes. W hen
you create a new type, which one do you choose? Here are some things to think ab out as you decide .

For star ters, do you have a particular need to have reference or value semantics? Since this is the primary
difference between the two, if you ��ve got a good re ason to want one over the other, your decision is
basically already made.

If your type is not much more t han a compound collection of a small handful of primitives, a struct might
be the way to go. For instance, if you want something to keep track of a person ��s blood pressure, which

Prefer Immutabl e Value Types 141

consists of two integers (systolic and diastolic pressures) a struct might be a good choice. On the other
hand, if you think you ��re going to have a lot of methods (or events or delegates, which we ��ll talk about in
Chapters 32 and 33) then you probably just want a class.

Also, structs don ��t support inheritance which is something we ��ll talk about in Chapter 22, so if that is
something you may need, then go with classes.

In practice, classes are far more common, and probably rightly so, but i t is important to remember that if
you choose one way or the oth er, and then decide to change it later, it will have a huge ripple effect
throughout any code that uses it. Methods will depend on reference or value semantics, and to change
from one to the other means a lot of other potential changes. It ��s a decision you want to make
consciously, rather than just always defaulting to one or the other.

Prefer Immutable Value Types
In programming, we often talk about types that are immutable , which means that once you ��ve set them
up, you can no longer m odify them. (As opposed to mutable types, which you can modify parts of its data
on the fly.) Instead, you would create a new copy that is similar, but with the changes you want to make.
All of the built -in types (including the string type, which is a refe rence type) are immutable.

There are definite benefits to making both value and reference types immutable, but especially so with
structs . This is because we think of value types like structs as a cohesive specific value. Because it has
value semantics (copies of the whole thing are made, rather than just making a second reference to the
same actual bytes in memory) we end up duplicating value types all over the place.

If we aren ��t careful, with a mutable, changeable value type, we might think we ��re modi fying the original,
but are instead modifying the original.

For example, what will the following code output?

struct S
{
 public int Value { get; set; }
}

class Program
{
 static void Main(string[] args)
 {
 S[] values = new S[10]; // New array of structs with default values is created here.
 S item = values[0]; // Danger! Copy is made here.
 item .Value++; // Copy is modified here.
 Console.WriteLine(values[0].Value); // Original, unmodified value is printed here.
 }
}

It actually prints out 0. This might come as a surprise. This is because the line that says S item =
values[0]; produces a copy for the assignment. So when you do item .Value++ , you are modifying the
copy, not the original. (This would not be true if S were a class instead of a struct.)

If we make S immutable so you can ��t modify its Value property at all, then the only way to produce a new
version with the correctly incremented value would be to create a n ew S object, populated with the
correct value at construction time. (You would want to define a constructor that allows you to specify
value at creation time if you do this.)

At this point, that item.Value++ line would have to become item = new S(item.Valu e + 1);, and the error
becomes much more obvious to spot.

142 Chapter 21 Structs

Making things in general immutable has many benefits, but for structs, you should definitely have a
preference for making them immutable. (Sometimes the overhead performance cost associated with
creating lots of objects will supersede the usefulness of immutable types, for example.)

The Built -In Types are Aliases
Back in Chapter 6, we took a look at all of the primitive or built -in types that C# has. This includes things
like int , float , bool , and string . In Chapter 16, we looked at value types vs. reference types, and we
discovered that these primitive types are value types , except for string , which is a reference type.

In fact, more than just being value types, they are actually structs! This means that everything we��ve been
learning about structs also applies to these built -in types .

Even more, a ll of the primitive types are aliases for other structs (or class, in the case of the string type).

We��ve been working with things like the int type. But b ehind the scenes the C# compiler is simply
changing this over to a struct that is defined in the same kind of way that we ��ve seen here. In this case, it
is the Int32 struct (System.Int32).

So while we ��ve been wri ting code that looks like this:

int x = 0 ;

We could have also used this:

Int32 x = new Int32();
Int32 y = 0 ; // Or combined.
int z = new Int32(); // Or combined another way. It ' s all the same thing.
int w = new int(); // Yet another way...

The following table identifies the aliases for each of the built -in types:

Primitive Type Alias For:

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

With only a few of exceptions, the �
real ����struct name is the same as the keyword version, just with
different capitalization. Keywords in C# are all lowercase by convention, but nearly everybody will
capitalize type names, which explains that difference.

The Built -In Types are Aliases 143

You��ll also see that instead of short , int , and long , the structs use Int followed by the number of bits they
use. It explicitly states exactly how many bits are in each type, which gives some clarity.

Additionally, float becomes Single rather than Float . Technically, float , double , and decimal are all
floating point types. But double has twice the bits as float , so the term �
single����is a more specific (and
therefore technically more accurate) name for it. The C# language designers stuck with float because
that ��s the keyword that is used for this data type in many other languages.

Answers: (1) Value types . (2) False. (3) False. (4) False. (5) False. string and object are reference types.

Try It Out!
Structs Quiz. Answer the following questions to check your understanding. When you ��re done, check
your answers against the ones below. If you missed something, go back and review the section that
talks about it.

1. Are structs value types or reference types?
2. True/False. It is easy to change classes to structs, or structs to classes.
3. True/False. Structs are always immutable.
4. True/False. Classes are never immutable.
5. True/False. All primitive/built -in types are structs.

This is a preview. These pages have been

excluded from the preview.

37
37 Lambda Expressions

The Motivation for Lambda Expressions
Lambda expressions are a relatively simple concept . The trick to understanding lambda expressions is in
understanding what they ��re actually good for . So that ��s where we ��re going to start our discussion.

For this discussion, let ��s say you had the following list of numbers:

// Collection initializer syntax (se e Chapter 25).
List<int> numbers = new List<int>() { 1, 7, 4, 2, 5, 3, 9, 8, 6 } ;

Let��s also say that somewhere in your code, you want to filter out some of them . Perhaps you want only
even numbers . How do you do that?

The Basic Approach
Knowing what we learned way back in some of the early chapters about methods and looping, perhaps
we could create something like this:

In a Nutshell
�x Lambda expre ssions are methods that appear �
in line �� and do not have a name.
�x Lambda expressions have different syntax than normal methods, which for simpl e lambda

expressions make s it very readable . The expression: x => x < 5 is the equivalent of the
method bool AMethod(int x) { return x < 5; } .

�x Multiple parameters can be used: (x, y) => x * x + y * y
�x As can zero parameters : () => Console.WriteLine("Hello World!")
�x The C# compiler can typically infer the types of the variables in use , but if not, you can

explicitly provide those types: (int x) => x < 5 .
�x If you want more than one expression, you can use a statement lambda instead, which has

syntax that looks more like a method: x => { bool lessThan5 = x < 5; return lessThan5; }
�x Lambda expressions can use variables that are in scope at the place where they are defined.
�x Expression syntax can be used to define normal, named methods, properties, indexers, and

operators as well: bool AMethod(int x) => x < 5;

The Motivation for Lambda Expressions 231

public static List<int> Find EvenNumbers(List<i nt> nu mbers)
{
 List<int> onlyEven s = new List<int>();

 foreach(int number in numbers)
 {
 if(number % 2 == 0) // checks if it is e ven using mod operator
 onlyEvens.Add(number);
 }

 return onlyEvens;
}

We could then call that method and get back our list of even numbers. But that ��s a lot of work for a single
method that may only ever be used once.

The Delegate Approach
Fast forward to Chapter 32, where we learned about delegates . For this particular task, delegates will
actually be able to go a long way towards helping us.

As it so happens, there ��s a method called Where that is a part of the List class (actually, it is an extension
method) that uses a delegate . Using the Where method looks like this:

IEnumerable <int> evenNumbers = numbers.Where(MethodMatchingTheFuncDelegate);

The Func delegate that the Where method uses is generic, but in this spe cific case, must return the type
bool , and have a single parameter that is the same type that the List contains (int , in this example) . The
Where method goes through each element in the array and calls the delegate for each item . If the
delegate returns true for the item, it is included in the results, otherwise it isn ��t.

Let me show you what I mean with an example . Instead of our first approach , we could write a simple
method that determines if a number is even or not:

public static bool IsEven(int number)
{
 return (number % 2 == 0);
}

This method matches the requirements of the delegate the Where method uses in this case (returns
bool , with exactly one parameter of type int).

IEnumerable <int> evenNumbers = numbers.Where(IsEven);

That ��s pretty readable and fairly easy to understand, as long as you know how delegates work. But let ��s
take another look at this .

Anonymous Methods
While what we ��ve done with the delegate approach is a big improvement over crafting ou r own method to
do all of the work, it has two small problems . First, a lot of times that we do something like this, the
method is only ever used once . It seems like overkill to go to all of the trouble of creating a whole method
to do this, especially sin ce it starts to clutter the namespace . We can no longer use the name IsEven for
anything else within the class . That may not be a problem, but it might.

Second, and perhaps more important, that method is located somewhere else in the source code . It may
be elsewhere in the file, or even in a completely different file . This separation makes it a bit harder to truly
understand what ��s going on when you look at the source code . It our current case, this is mostly solved by
calling the me thod something intellige nt (IsEven) but you don ��t always get so lucky.

232 Chapter 37 Lambda Expressions

This issue is common enough that back in C# 2.0, they added a feature called anonymous methods to deal
with it . Anonymous methods allow you to define a method �
in line, �� without a name.

I��m not going to go int o a whole lot of detail about anonymous methods here, because lambda
expressions mostly replaced them.

To accomplish what we were trying to do with an anonymous method, instead of creating a whole
method named IsEven , we could do the following:

numbers.Where(delegate(int number) { return (number % 2 == 0); });

If you take a look at that, you can see that we ��re basically taking the old IsEven method and sticking it in
here, �
in line. ��

This solves our two problems . We no longer have a named method floating ar ound filling up our
namespace, and the code that does the work is now at the same place as the code that needs the work.

I know, I know . You��re probably saying, �
But that code is not very readable ! Everything ��s just smashed
together! �� And you ��re right . Anonymous methods solve d some problems, while introducing others . You
would have to decide which set of problems works best for you, depending on your specific case.

But this finally brings us to lambda expressions.

Lambda Expressions
Basically, a lambda expression is simply a method . More specifically, it is an anonymous method that is
written in a different form that (theoretically) makes it a lot more readable . Lambda expressions were new
in C# 3.0.

Creating a lambda expression is quite simple . Returning to the IsEven problem from earlier, if we want to
create a lambda expression to determine if a variable was even o r odd, we would write the following:

x => x % 2 == 0

The lambda operator (=>) is read as �
goes to ����or �
arrow. �� (So, to read this line out loud, you would say �
x
goes to x mod 2 equals ������or �
x arrow x mod 2 equals �������� The lambda expression is basically saying to
take the input value, x, and mod it with 2 and check the result against 0.

You may also notice with a lambda expression, we didn ��t use return . The code on the right side of the =>
operator m ust be an expression, which evaluates to a single value. That value is returned, and it s type
becomes the return type of the lambda expression.

This version is the equivalent of all of the other versions of IsEven that we wrote earlier in this chapter.
Speaking of that earlier code, this is how we might use this along with everything else:

IEnumerable <int> evens = numbers.Where(x => x % 2 == 0);

It may take a little getting used to, but generally speaking it is much easier to read and understand than
the ot her techniques that we used earlier .

In Depth
The Name �
Lambda. ������The name �
lambda �� comes from lambda calculus, which is the mathematical
basis for programming languages. It is basically the programming language people used before there
were comput ers at all. (Which is kind of strange to think about.) �
Lambda �� would really be spelled
with th e Greek letter lambda ���ˆ����but the keyboard doesn ��t have it, so we just use �
lambda. ��

Multiple and Zero Parameters 233

Multiple and Zero Parameters
Lambda expressions can have more than one parameter . To use more than one paramet er, you simply
list them in pare ntheses, separated by commas:

(x, y) => x * x + y * y

The parentheses are optional with one parameter, so in the earlier example, I ��ve left them off.

This example above could have been written instead as a method like the following:

public int HypoteneuseSquared(int x, int y)
{
 return x * x + y * y;
}

Along the same lines, you can also have a lambda expression that has no parameters:

() => Console.WriteLine(" Hello World! ")

Type Inference Failures and Explicit Types
The C# compiler ��s type inference is smart enough to look at most lambda expressions and figure out what
variable types and return type you are working with , but in some cases, the type inference fails, and you
have to fall back to explicitly stating the types in use, or the code won ��t compile.

If this happens, you ��ll need to explicitly put in the type of the variable, like this:

(int x) => x % 2 == 0;

Using explicit types in your lambda expressions is always an option, not just when the compiler can ��t infer
the type. Most C# programmers will generally take advantage of type inference when possible in a
lambda, but if you like the syntax better or if it makes some specific situation clearer, feel free to use a
named type instead of just using type inference, eve n if it isn ��t required.

Statement Lambdas
As you��ve seen by now, most methods are more than one line long . While lambda expressions are
particularly well suited for very short, single line methods, there will be times that you ��ll want a lambda
expression that is more than one line long . This complicates things a little bit, because now you ��ll need to
add in semicolons, curly braces, and a return statement, but it can still be done:

(int x) => { bool isEven = x % 2 == 0; return isEv en; }

The form we were using earlier is called an expression lambda, because it had only one expression in it .
This new form is called a statement lambda . As a statement lambda gets longer, you should probably
consider pulling it out into its own method.

Scope in Lambda Expressions
From what we ��ve seen so far , lambda expressions have basically behaved like a normal method, only
embedded in the code and with a different, cleaner syntax . But now I ��m going to show you so mething that
will throw you for a loop.

Inside of a lambda expression, you can access the variables that were in scope at the location of the
lambda expression. Take the following code, for example:

234 Chapter 37 Lambda Expressions

int cutoffPoint = 5;
List<int> numbers = new List<int>() { 1, 7, 4, 2, 5, 3, 9, 8, 6 } ;

IEnumerable<int> numbersLessThanCutoff = numbers.Where(x => x < cutoffPoint);

If our lambda expression had been turned into a method, we wouldn ��t have access to that cutoffPoint
variable . (Unless we supplied it as a parameter .) This actually adds a ton of power to the way lambda
expressions can work, so it is good to know about.

(For what it ��s worth, anonymous methods have the same feature.)

Expression -Bodied Members
Lambda expressions were introduced to C# in version 3.0, and as I mentioned earlier, one of the big
draws to it is that the syntax is much more concise . That��s great for short methods that would otherwise
require a lot of overhead to define.

C# 6.0 extends this a little, allowing you to use the same expression syntax to define normal non -lambda
methods within a class. For example, consider the method below:

public int ComputeSquare(int value)
{
 return value * value;
}

Now that we know about lambda expressions and the syntax that goes with them, it makes sense to point
out that this method could also be implemented with the same expression syntax:

public int ComputeSquare(int value) => value * value ;

This only works if the method can be tu rned into a single expression. In othe r words, we can use the
expression lambda syntax, but not the statement lambda syntax. If we need a statement lambda , we
would just write a normal method.

This syntax is not just limited to methods. Any method -like member of a type can use the same syntax. So
that includes indexers, operator overloads, and properties (though this only applies to read -only
properties where your expression defines the getter and the property has no setter). The following simple
class shows all four of these in operation:

publ ic class SomeSortOfClass
{
 // These two private instance variables are used by the methods below.
 private int x;
 private int[] internalNumbers = new int[] { 1, 2, 3 };

 // Property (read - only, no setter allowed)
 public int X => x;

 // Operator overload
 public static int operator +(SomeSortOfClass a, SomeSortOfClass b) => a.X + b.X;

 // Indexer
 public int this[int index] => internalNumbers[index];

 // Normal method
 public int ComputeSquare(int value) => value * val ue;
}

.

Lambdas vs. Local Functions 235

Lambdas vs. Local Functions
In all cases where you might use a lambda, you could also use a local function, which was introduced in
Chapter 28. The scenario s in which you might use a lambda are also good fits for local functions, and the
two can even be combined together, using an expression -bodied local function. To illustrate, consider the
following three methods which are all equivalent in terms of functio nality:

public static IEnumerable<int> FindEvenNumbers1(List<int> numbers)
{
 return numbers.Where(x => x % 2 == 0); // Plain lambda expression.
}

public static IEnumerable<int> FindEvenNumbers2(List<int> numbers)
{
 bool IsEven(int number) // Local function.
 {
 return number % 2 == 0;
 }

 return numbers.Where(IsEven);
}

public static IEnumerable<int> FindEvenNumbers3(List<int> numbers)
{
 bool IsEven(int number) => number % 2 == 0; // Expression - bodied local function.

 retu rn numbers.Where(IsEven);
}

Each of the three above options are functionally equivalent, but with rather different syntax. The first is a
plain lambda expression. This is probably the most concise of the three, and for somebody comfortable
with lambda expr essions, is quite readable.

The second is a local function. It isn ��t nearly as concise, but has the advantage of giving a name to the
functionality.

The third is a local function with an expression body. This is something of a compromise of the two.

Each of the above can be the best option in different scenarios. All have their place. Pick the one that
produces the most readable code for any given situation.

Answers: (1) True. (2) False. (3) Lambda operator (=>). (4) x => x < 0. (5) False. (6) True.

Try It Out!
Lambda Expressions Quiz. Answer the following questions to check your understanding. When
you��re done, check your answers against the ones below. If you missed something, go back and
review the section that talks about it.

1. True/False. Lambda expressions are a special type of metho d.
2. True/False. A lambda expression can be given a name.
3. What operator is used in lambda expressions?
4. Convert the following to a lambda expression: bool IsNegative(int x) { return x < 0; }
5. True/False. Lambda expressions can only have one parameter.
6. True/Fal se. Lambda expressions have access to the local variables in the method they

appear in.

This is a preview. These pages have been

excluded from the preview.

52 Glossary

.NET Core
A newer.NET Platform stack that is designed to be more
cross-platform friendly, and primarily targets Linux and
macOS. (Chapter 44.)

.NET Framework
The oldest (original) most popular, and most complete
stack within the .NET Platform . Aimed primarily at
Windows computers. This term is frequently used to refer
to the entire .NET ecosystem, though this book makes a
distinction between these two, and calls the entire system
the .NET Platform. (Chapter s 1 and 44.)

.NET Platform
The platform C# is built for and utilizes. The term used in
this book to describe the entire .NET ecosystem, including
all stacks (the .NET Framework, .NET Core, Xamarin, etc.),
all app models, the entire .NET Standard Library, the
compilers, CLR runtime, CIL language, and other tools. This
�L�V���D�O�V�R���V�R�P�H�W�L�P�H�V���F�D�O�O�H�G���V�L�P�S�O�\���
���1�(�7�����D�Q�G���D�Oso frequently
called the .NET Framework, though this book makes a
distinction between the two. (Chapters 1 and 44.)

.NET Standard
A specification that defines a vast collection of reusable
types (classes, interfaces, structs, enums, etc.) that exist
across multiple stacks within the .NET Platform. The .NET
Standard allows yo u to reuse code and produce code that
can be migrated from stack to stack. It allows you to write
code that runs on the original .NET Framework, as well as
.NET Core, Xamarin, and other stacks. The .NET standard
has many different levels or version numbers . Higher
version numbers include more reusable material. Lower

version numbers allow you to target more diverse stacks.
(Chapters 1 and 44.)

.NET Standard Library
See .NET Standard.

Abstract Class
A class that you cannot create instances of. Instead, you
can only create instances of derived classes. The abstract
class is allowed to define any number of members, both
concrete (implemented) and abstract (unimplemented).
Derived classes must provide an implementation for any
abstract members defined by the abstract base class
before you can create instan ces of the type. (Chapter 23.)

Abstract Method
A method declaration that does not provide an
implementation or body. Abstract methods can on ly be
defined in abstract classes. Derived classes that are not
abstract must provide an implementation of the method.
(Chapter 23.)

Accessibility Level
Types and members are given different levels that they can
be accessed from, ranging from being available to anyone
who has access to the code, down to only being accessible
from within the type they are defined in. More restrictive
accessibility levels make something less vulnerable to
tampering, while less restrictive levels allow more people
to utilize the code to get things done. It is important to
point out that this is a mechanism provided by the C#
language to make programmer ��s lives easier, but it is not a
way to prevent hacking, as there are still ways to get access

 Glossary 355

to the code. Types and type members can be given an
access modifier, which specifies what accessibility level it
has. The private accessibility level is the most restrictive,
and means the code can only be used within the type
defining it, protected can be used within the type defining
it and any derived types, internal indicates it can be used
anywhere within the assembly that defines it, and public
indicates it can be used by anyone who has access to the
code. Additionally, the combination of protected internal
can be used to indicate that it can be used within the
defining type, a derived type , or within the same assembly.
(Chapters 18 and 22.)

Accessibility Modifier
See Accessibility Level.

Anonymous Method
A special type of method where no name is ever supplied
for it. Instead, a delegate is used, and the method body is
supplied inline. Because of their nature, anonymous
methods cannot be reused in multiple locations. Lambda
expressions largely supersede anon ymous met hods and
should usually be used instead . (Chapter 37.)

Anonymous Type
A type (specifically a class) that does not have a formal type
name and is created by using the new keyword with a list
of properties. E.g., new { A = 1, B = 2 } . The properties of
an anonymous type are read -only. (Chapter 19.)

App Model
A component of the .NET Platform that allows you to easily
create a specific type of application. This primarily consists
of a library of reusable code for creating applications of
that type, but also contains additional infrastructure such
as a deployment model or a security model. (Chapter 44.)

Argument
See parameter .

Array
A collection of multiple values of the same type, placed
together in a list -like structure. (Chapter 13.)

ASP.NET
An app model for building web -based applications using
the .NET Framework or .NET Core stacks. This book does
not cover ASP.NET in depth. (Chapter 44.)

Assembly
Represents a single block of redistributable code, used for
deployment, security, and versioning. An assembly comes
in two forms: a process assembly, in the form of an EXE file,
and a library assembly, in the form of a DLL file. An EXE file

contains a star ting point for an application, while a DLL
contains reusable code without a specified starting point.
See also project and solution. (Chapter 44.)

Assembly Language
A very low level programming language where each
instruction corresponds directly to an equivalent
instruction in machine or binary code. Assembly languages
can be thought of as a human readable form of binary.
(Chapter 44.)

Assignment
The process of placing a value in a specific variable.
(Chapter 5.)

Associativity
See Operator Associativity.

Asynchronous Programming
The process of taking a potentially long running task and
pulling it out of the main flow of execution, having it run on
a separate thr ead at its own pace. This relies heavily on
threading. (Chapter s 39 and 40.)

Attribute
A feature of C# that allows you to give additional meta
information about a type or member. This information can
be used by the compiler, other tools that analyz e or
process the code , or at run -time. You can create custom
attributes by creating a new type derived from the
Attribute class. Attributes are applied to a type or
member by using the name and optional parameters for
the attribute in square brackets immed iately above the
type or member ��s declaration. (Chapter 43.)

Base Class
In inheritance, a base class is the one that is being derived
from. The m embers of the base class are included in the
derived type. A base class is also frequently called a
superclass or a parent class. A class can be a base class,
and a derived class simultaneously. See also inheritance,
derived class, and sealed class. (Chapter 22.)

Base Class Library
The .NET Standard Library implementation that is a part of
the .NET Framework . It is the most expansive and most
widely use implementation of the Standard Library
(Chapter 44.)

BCL
See Base Class Library.

This is a preview. These pages have been

excluded from the preview.

53 Index

Symbols

- operator, 43, 219
�•��������
-- operator, 58, 219
-= operator, 47, 216, 219
. operator, 85, 220
!= operator, 64, 219
% operator, 44, 219
%= operator, 47, 219
& operator, 278
:: operator, 293
&& operator, 67, 220, 278
&= operator, 279
& operator, 267
* operator, 43, 219, 266
*= operator, 47, 219
/ operator, 43, 219
/= operator, 47, 219
: operator, 145, 158
?: operator, 68
?? operator, 283
@ symbol, 52
[] operator, 223
^ operator, 279
^= operator, 279

| operator, 278
|| operator, 67, 220, 278
|= operator, 279
~ operator, 279
+ operator, 43, 219
++ operator, 58, 219
+= operator, 47, 216, 219
< operator, 64, 219
<< operator, 278
<<= operator, 279
<= operator, 65, 219
= operator, 47, 220
== operator, 62, 219
=> operator, 232
> operator, 64, 219
-> operator, 267
>= operator, 65, 219
>> operator, 278
>>= operator, 279
.NET Core, 310
.NET Framework, 4, 309, 354
.NET Platform, 301
.NET Standard Library, 4, 302, 308

 Index 375

A

abstract class, 151, 354
abstract keyword, 154
abstract method, 158, 354
accessibility level, 127, 354

internal, 121, 355
private, 114, 355
protected, 148, 355
protected internal, 355
public, 115, 355

accessibility modifier. See accessibility level
Action delegate, 216
addition, 43
Address Of operator, 267
algorithm, 21, 352
alias, 178
Android app model, 312
anonymous method, 231, 355
app model, 4, 303, 311
application virtual machine, 306
argument. See parameter
ArgumentNullException class, 198
array, 78, 144, 346, 355

declaring, 79
elements, 79
length, 80
retrieving and assigning values in, 79

as keyword, 147
ASP.NET, 311, 351, 355
assembler, 305
assembly, 12, 319, 355
assembly language, 305, 355
assembly reference, 331
assignment, 355, 361, 365
assignment operator, 46
associativity, 46
async keyword, 256
asynchronous programming, 251, 355

AsyncResult pattern, 254
with the Task -based Asynchronous Pattern, 255
with the ThreadPool, 253

asynchrony. See asynchronous programming
attribute, 274, 355
await keyword, 256

B

backing field, 126
base case, 96
base class, 145, 355
Base Class Library, 4, 302, 309, 355
base keyword, 148, 153
BCL. See Base Class Library
binary, 3, 14, 356
binary language, 305

binary literal , 39
BinaryWriter class, 193
bit, 29
bit field, 277, 356
bitshift operator, 278
bitwise and operat or, 278
bitwise complement operator, 279
bitwise logical operator, 278
bitwise operator, 356
bitwise or operator, 278
block scope, 116
bool type, 36, 66, 142
Boolean, 356
Boolean struct, 142
break keyword, 70, 75
breakpoint, 336, 356
built -in type, 31, 142, 356
byte, 29
Byte struct, 142
byte type, 32, 142

C

C++, 4, 356
Caesar cipher, 346
call stack, 335
callback method, 255
case keyword, 70
case label. See case statement
case statement, 70
casting. See typecasting
catch block, 196
catch keyword, 196
Char struct, 142
char type, 33, 142
checked context, 294
CIL. See Common Intermediate Language
class, 17, 112, 356

creating, 112
partial, 149
sealed, 148

class keyword, 113
class scope, 116
class variable. See static class variable
CLR. See Common Language Runtime
Code Window, 313, 356
command line arguments, 285, 356
comment, 19, 356
Common Intermediate Language, 302, 307, 356
Common Language Runtime, 4, 302, 306, 357
compiler, 14, 357
compiler error, 326
compiler warning, 326
compile -time contant. See constant
compound assignment operator, 47, 357
conditional operator, 67, 68, 357

376 Index

Console class, 95
const keyword, 273, 357
constant, 273, 357

run -time constant, 357
constant pattern, 202
constructor, 115, 357

default parameterless , 140
default parameterless constructor, 357
inheritance, 147

context switch, 246
continue keyword, 75
contravariance, 290
Convert class, 49, 95, 192
covariance, 290
critical section, 357
.csproj file, 341
.csproj.user file, 341
CSV file, 191
curly braces, 16, 64, 328, 357

D

data structure, 352
debug, 333, 357
debug mode, 15, 333
Decimal struct, 142
decimal type, 35, 142
declaration, 357
decrement, 357
default keyword, 70, 171
delegate, 206, 214, 231, 357

chaining, 209
creating, 206
relation to events, 218
using, 207

Delegate class, 208, 254
delegate keyword, 207
Delta Engine, 352
dependency, 319
derived class, 145, 357
Dictionary class, 160, 165
digit separator , 40
DirectX, 352
divide and conquer, 87, 358
DivideByZeroException class, 198
division, 43
division by zero, 56, 358
DLL, 319, 358
DLLImport attribute , 270
do keyword, 74
Double struct, 142
double type, 34, 142
do -while loop, 74
dynamic keyword , 260
dynamic language runtime , 260
dynamic object , 260
dynamic objects , 259
dynamic type checking , 259

dynamic typing , 259
DynamicObject class, 262

E

e (number), 57
E notation , 38
else keyword, 63
encryption, 346
enum. See enumeration
enum keyword, 85
enumeration, 358

flags, 279
underlying type, 86

error handling, 194
Error List, 315, 326, 358
escape character, 51
escape sequence, 51
event, 157, 212, 358

attaching and detaching, 215
defining, 213
raising, 214
relation to delegates, 218

event keyword, 214
EventArgs type, 214
EventHandler delegate, 214
EventHandler<TEventArgs> delegate, 216, 217
events, 253
exception, 194, 334, 358

catching, 195
filters, 200
throwing, 195

Exception class, 195
exception filter, 200
exclusive or operator, 279
EXE, 319, 358
ExpandoObject class, 262
explicit, 358
explicit conversion, 55
explicit keyword, 286
expression, 44
expression lambda, 233
expression -bodied members, 234
extension method, 226, 358
extern keyword , 270

F

factorial, 96
false keyword, 36
Fibonacci sequence, 97
field. See instance variable
File class, 190
file I/O, 157, 190
file input, 190
file output, 190
FileStream class, 192

 Index 377

fixed keyword , 269
fixed size array , 269
fixed statement , 268
FizzBuzz, 77
Flags attribute, 279
float type, 34, 142
floating point number, 34
floating point type, 359
for keyword, 74
for loop, 74
foreach keyword, 82
foreach loop, 77, 82, 272
forever loop, 73
FormatException class, 198
frame, 99
Framework Class Library, 359
from clause, 238
fully qualified name, 176, 359
Func delegate, 211
function. See method

G

game development, 352
garbage collection, 79, 99, 359
generic method, 171
generic type parameter, 163
generics, 160, 167, 359

covariance and contravariance, 290
inheritance, 290
motivation for, 160

get keyword, 126
global keyword, 293
goto keyword, 287
graphical user interfaces, 311
group clause, 241
group join, 242
GUI developm ent, 311

H

heap, 98, 359
Hello World!, 10
hexadecimal literal , 39

I

IAsyncResult interface , 254
IDE. See Integrated Development Environment
IDisposable interface, 280
IDynamicMetaObjectProvider interface , 261
IEnumerable interface, 83
IEnumerable<T> interface, 164, 237
if keyword, 61
if statement, 61

immutability, 141, 360
implicit, 359
implicit conversion, 55
implicit keyword, 286
implicitly typed local variable, 360
in keyword, 83
increment, 359
index, 79
index initializer syntax, 225
indexer, 157, 220, 223, 359

multiple indices, 224
types in, 224

IndexOutOfRangeException class, 198
indirection operator, 267
infinite loop, 73
infinity, 56
inheritance, 144, 360
instance variable, 114, 360
int type, 31, 142
Int16 struct, 142
Int32 struct, 142
Int64 struct, 142
integer division, 54, 360
integer type, 33
integral type, 33, 360
Integrated Development Environment, 6, 360
IntelliSense, 316, 360
interface, 150, 156, 360

creating, 157
implementing, 158
implementing multiple, 159
naming convention, 158

interface keyword, 158
internal keyword, 121
into clause, 242
InvalidCastException class, 198
invariance, 290
iOS app model, 312
is keyword, 146

patterns, 204
is-a relationship, 145, 360
is-a-special-type -of relationship, 145, 360
iterator, 360

J

jagged array, 82, 360
Java, 4, 351, 361
JIT compiler. See Just-in-Time compiler
join clause, 240
Just-in-Time compiler, 306, 361

K

keyword, 16, 361

378 Index

L

labeled statement, 287
lambda expression, 230, 361

multiple parameters, 233
zero parameters, 233

lambda operator, 232
Language Integrated Query, 236, 361
lazy evaluation, 67
left associativity , 46
let clause, 240
library assembly, 13
line numbering, 316
lines of code, 229
LINQ. See Language Integrated Query
Linux, 9
List class, 231
literal, 35, 38
local function, 180
local variable, 114, 361
lock keyword, 250
long type, 32, 142
loop, 72, 361

breaking out of, 75
continuing to next iteration, 75

M

managed memory, 99, 361
math, 42
Math class, 57
member, 17, 88, 109, 114, 213, 361
memory barrier , 296
method, 16, 87, 157, 180, 361

calling, 89
local function, 180
multiple return values, 11, 186
passing parameters to, 92
returning from, 90
signature, 94

method body. See method implementation
method call, 361
method implementation, 89, 362
method overloadi ng, 93, 331
method overriding, 152
method scope, 116
method signature, 362
Microsoft Developer Network, 353
mod, 44
modulo operator, 44
MonoGame, 352
MulticastDelegate class, 208
multi -dimensional array, 82
multiple inheritance, 150, 159
multiplication, 43
mutex, 250, See mutual exclusion
mutual exclusion, 250, 362

N

name collision, 178, 362
name hiding, 117, 362
named parameter, 182, 362
nameof operator, 275
namespace, 17, 175, 330, 342, 362
namespace alias operator, 293
namespace keyword, 16, 175
NaN, 57, 362
narrowing conversion, 55
nested statements, 67
nesting, 76, 362
new keyword, 79, 154
NotImplementedException class, 198
NotSupportedException class, 198
NuGet package manager, 321
null keyword, 102
null propagation, 283
null propagation operators, 283
null reference, 102, 362
nullable type, 283, 362
Nullable<T> struct, 283
NullReferenceException class, 198, 214
numeric literal, 38

O

object, 362
Object class, 142
object initializer syntax, 128
object keyword, 148
object type, 142, 247
object -oriented pr ogramming, 105, 362
Obsolete attribute, 274
off -by-one error, 79
OpenGL, 352
operand, 43
operation, 43
operator, 43, 362

binary, 43, 68, 356
ternary, 68, 366
unary, 45, 68, 367

operator keyword, 221
operator overloading, 219, 223, 363
operator precedence, 46
opereator associativity, 46
optional parameter, 181, 363
Options Dialog, 315
order of operations, 46, 363
orderby clause, 240
out keyword, 183
out -of-order execution , 295
output parameter, 184, 187
overflow, 57, 363
overloading, 93, 363
override, 152

 Index 379

override keyword, 152

P

package, 319
parameter, 92, 114, 363

variable number of, 182
parameter list, 92
ParameterizedThreadStart delegate, 247
params keyword, 183
parent class. See base class
parentheses, 46, 328, 363
parse, 191, 363
partial class, 363
partial keyword, 149
pattern

in switch statement, 203
with is keyword, 204

pattern matching, 201
pinned objects, 269
pointer, 266
pointer member access operator, 267
pointer type, 266, 364
polymorphism, 151, 364
postfix notation, 58
precedence, 46
prefix n otation, 58
preprocessor directive, 281, 364
primitive type. See built -in type
private keyword, 114
procedure. See method
process assembly, 13
process virtual machine, 306
project, 12, 340, 364
Properties Window, 315
property, 124, 157, 223, 364

auto -implemented, 127
default value, 128
readonly, 127

protected keyword, 148

Q

query expression, 236, 364

R

Random class, 108
readonly keyword, 274, 357
real number, 34
rectangular array, 82, 364
recursion, 96, 364
ref keyword, 183
ref local variable , 185
refactor, 317, 364

reference, 100, 365
reference parameter, 184
reference semantics, 103, 365
reference type, 98, 100, 110, 365
reflection, 280, 365
regular expression, 201
relational operator, 64, 221, 365
release mode, 15, 333
remainder, 44
return, 59, 66, 90, 272, 329, 365
return keyword, 199
right associativity , 46

S

SByte struct, 142
sbyte type, 33, 142
scalar, 221
scientific notation , 38
scope, 233, 327, 365
sealed class, 365
sealed keyword, 148
select clause, 239
semicolon, 18
set keyword, 126
SharpDX, 352
short type, 32, 142
signature, 94
signed type, 32, 365
Single struct, 142
sizeof operator, 276
.sln file, 340
software engineering, 352
solution, 13, 340, 365
Solution Explorer, 314, 365
source code, 3, 366
square array, 82
square brackets, 36 6
stack, 98, 366
stack allocation , 267
stack trace, 99
StackOverflowException class, 198
statement lambda, 233
static, 366
static class, 121, 227
static class variable, 120
static constructor, 121
static keyword, 120, 227, 366
static method, 227
static type checking , 259
statically typed language , 259
String class, 142
string concatenation, 52
string type, 36, 142, 366
string.Split method, 192
struct, 138, 145, 366

380 Index

structure, 138
subclass, 145
subroutine. See method
subscript, 79
subtraction, 43
succinct null checking, 283
.suo file, 340
superclass, 145
switch keyword, 70
switch statement, 69

patterns, 203
types allowed, 71

synchronous programming, 252
event -based, 253

T

TAP. See Task-based Asynchronous Pattern
Task class, 255
Task<TResult> class, 255
Task-based Asynchronous Pattern, 255
TextReader class, 193
TextWriter class, 192
this keyword, 117, 227
thread, 245, 366

sleep, 247
Thread class, 246, 252
thread safety, 249, 250, 366
ThreadPool class, 253
ThreadStart delegate, 246
throw keyword, 197
true keyword, 36
try block, 196
try keyword, 196
type, 26, 366
Type class, 280
type conversion, 329
type inference , 40, 233, 367
type pattern, 202
type safety, 162, 367
type system, 31
typecasting, 55, 86, 146, 161, 286, 329, 367
typeof keyword, 280

U

uint type, 32, 142
UInt16 struct, 142
UInt32 struct, 142
UInt64 struct, 142
ulong type, 32, 142
unchecked context, 294
underflow, 57, 367
unhandled exception, 195
Unicode, 33
Unity, 352
unsafe code , 265, 367

unsafe context, 266
unsafe keyword , 266
unsigned typ e, 367
unverifiable code, 266
user input, 48
user-defined conversion, 286, 367
ushort type, 32, 142
using directive, 16, 175, 227, 330, 367

static, 179
using keyword, 16, 178
using statement, 280, 367

V

value keyword, 126
value semantics, 103, 367
value type, 98, 100, 367
ValueTuple class, 188
ValueTuple struct, 321
var keyword , 41
var pattern, 203
variable, 25, 367

assigning a value to, 27
declaring, 26
naming, 29

verbatim string literal, 52
version control system, 340
virtual keyword, 152, 158
vir tual machine, 306, 368

advantages, 307
disadvantage, 308

virtual method, 151, 368
Visual Basic.NET, 368
Visual C++. See C++
Visual Studio, 6, 7, 11, 313, 368

installer, 7
keyboard shortcuts, 317

Visual Studio Code, 9
Visual Studio Community Edition, 7, 368
Visual Studio Enterprise Edition, 7
Visual Studio Professional Edition, 7, 368
void keyword, 89
volatile fields, 295
volatile keyword , 295

W

where clause, 239
where keyword, 170
while keyword, 72
while loop, 72
whitespace, 17, 64
widening conversion, 55
Windows Forms, 311, 351, 368
Windows Presentation Foundation, 368
word count, 228
WPF, 351

 Index 381

X

Xamarin, 9, 303, 310, 352
Xamarin Studio, 9

Xenko, 352
XML Documentation Comment, 20, 95, 368
XNA, 352
xor operator, 279

