

This is a preview. These pages have been

excluded from the preview.

Starbound Software

RB Whitaker

The C# Player's Guide

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the author and publisher were aware of

those claims, those designations have been printed with initial capital letters or in all capitals.

The author and publisher of this book have made every effort to ensure that the information in this book

was correct at press time. However, the author and publisher do not assume, and hereby disclaim any

liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors

or omissions result from negligence, accident, or any other cause.

Copyright © 2012 by RB Whitaker

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage and retrieval

system, without written permission from the author, except for the inclusion of brief quotations in a

review. For information regarding permissions, write to:

Starbound Software

879 W Mallard Loop

Logan, UT 84321

ISBN: 0-985-58010-0

ISBN-13: 978-0-9855801-0-0

1 Contents at a Glance

Acknowledgements xiii

Introduction xiv

Part 1: Getting Started

1. The C# Programming Language 3

2. Installing Visual Studio 6

3. Hello World: Your First C# Program 9

4. Comments 19

Part 2: The Basics

5. Variables 25

6. The C# Type System 31

7. Basic Math 39

8. User Input 45

9. More Math 50

10. Decision Making 57

11. Switch Statements 67

12. Looping 71

13. Arrays 78

14. Enumerations 84

15. Methods 88

16. Value and Reference Types 100

Part 3: Object-Oriented Programming

17. Classes and Objects 109

18. Making Your Own Classes 114

19. Properties 127

iv Contents at a Glance

20. Structs 132

21. Inheritance 138

22. Polymorphism, Virtual Methods, and Abstract Classes 145

23. Interfaces 150

24. Using Generics 154

25. Making Generic Types 160

Part 4: Advanced Topics

26. Namespaces and Using Directives 169

27. Methods Revisited 174

28. Reading and Writing Files 179

29. Error Handling and Exceptions 184

30. Delegates 192

31. Events 196

32. Threads 203

33. Asynchronous Programming in C# 5.0 210

34. Operator Overloading 214

35. Indexers 219

36. Extension Methods 222

37. Lambda Expressions 226

38. Query Expressions 231

39. Other Features in C# 237

Part 5: Mastering the Tools

40. C# and the .NET Framework 257

41. Getting the Most from Visual Studio 264

42. Referencing Other Projects 271

43. Handling Common Compiler Errors 276

44. Debugging Your Code 284

45. How Your Project Files are Organized 291

Part 6: Wrapping Up

46. Try It Out! 297

47. What's Next? 303

Glossary 307

Index 321

2 Table of Contents

Acknowledgements xiii

Introduction xiv

The Player's Guide xiv

How This Book is Organized xv

Getting the Most from This Book xvii

I Genuinely Want Your Feedback xviii

This Book Comes with Online Content xviii

Part 1: Getting Started

1. The C# Programming Language 3

What Exactly is C#? 3

What is the .NET Framework? 4

C# and .NET Versions 5

2. Installing Visual Studio 6

Versions of Visual Studio 6

The Installation Process 8

3. Hello World: Your First C# Program 9

Creating a New Project 10

A Brief Tour of Visual Studio 11

Building Blocks: Projects, Solutions, and Assemblies 12

Modifying Your Project 12

Compiling and Running Your Project 14

A Closer Look at Your Program 15

Whitespace Doesn't Matter 17

Semicolons 17

4. Comments 19

What is a Comment? 19

vi Table of Contents

Why Should I Use Comments? 19

How to Make Comments in C# 20

How to Make Good Comments 21

Part 2: The Basics

5. Variables 25

What is a Variable? 25

Creating Variables 26

Assigning Values to Variables 27

Retrieving the Contents of a Variable 27

How Data is Stored 29

Good Variable Names 29

6. The C# Type System 31

An Introduction to the Type System 31

The int Type 31

The byte, short, and long Types 32

The sbyte, ushort, uint, and ulong Types 32

The char Type 33

The float, double, and decimal Types 34

The bool Type 36

The string Type 37

7. Basic Math 39

Operations and Operators 40

Addition, Subtraction, Multiplication, and Division 40

The Remainder Operator 42

Unary "+" and "-" Operators 42

Order of Operations and Parentheses 43

Why the '=' Sign Doesn't Mean Equals 43

Compound Assignment Operators 44

8. User Input 45

User Input from the Console 45

Converting 45

A Complete Sample Program 46

Escape Characters 48

9. More Math 50

Integer Division 51

Working with Different Types and Casting 52

Division by Zero 53

Infinity, NaN, e, π, MinValue, and MaxValue 54

Overflow and Underflow 55

Incrementing and Decrementing 55

10. Decision Making 57

The if Statement 58

The else Statement 59

Table of Contents vii

else-if Statements 59

Curly Braces Not Always Needed 60

Relational Operators: ==, !=, <, >, <=, >= 61

Using bool in Decision Making 62

The ! Operator 63

Conditional Operators: && and || (And and Or) 64

Nesting If Statements 65

The Conditional Operator ?: 65

11. Switch Statements 67

The Basics of Switch Statements 68

Types Allowed with Switch Statements 69

No Implicit Fall-Through 69

12. Looping 71

The While Loop 71

The Do-While Loop 73

The For Loop 73

Breaking Out of Loops 74

Continuing to the Next Iteration of the Loop 75

Nesting Loops 75

Still to Come: Foreach 77

13. Arrays 78

What is an Array? 78

Creating Arrays 79

Getting and Setting Values in Arrays 79

More Ways to Create Arrays 80

Array Length 80

Some Examples with Arrays 81

Arrays of Arrays and Multi-Dimensional Arrays 82

The Foreach Loop 83

14. Enumerations 84

The Basics of Enumerations 84

Why Enumerations are Useful 86

Underlying Types 86

Assigning Numbers to Enumeration Values 87

15. Methods 88

Creating a Method 89

Calling a Method 91

Returning Stuff from a Method 92

Sending Stuff to a Method 94

Passing in Multiple Parameters 94

Method Overloading 95

Revisiting the Convert, and Console Classes 97

XML Documentation Comments 97

The Minimum You Need to Know About Recursion 98

viii Table of Contents

16. Value and Reference Types 100

The Stack and the Heap 100

Memory Management and Garbage Collection 101

References 102

Value Types and Reference Types 102

Null: References to Nothing 104

Value and Reference Semantics 105

Part 3: Object-Oriented Programming

17. Classes and Objects 109

Modeling the Real World 109

Working with an Existing Class 110

Using an Object 111

The Power of Objects 112

Classes are Reference Types 112

18. Making Your Own Classes 114

Creating a New Class 115

Adding Instance Variables 116

Access Modifiers: private and public 117

Adding Constructors 117

Adding Methods 121

The Static Keyword 123

The internal Access Modifier 124

Finishing the Sample 125

19. Properties 127

The Motivation for Properties 128

Creating Properties 128

Different Accessibility Levels 130

Auto-Implemented Properties 131

Object Initializer Syntax 131

20. Structs 132

Creating a Struct 132

Structs vs. Classes 133

Deciding Between a Struct and a Class 134

Prefer Immutable Value Types 135

The Built-In Types are Aliases 135

21. Inheritance 138

Base Classes 139

Derived Classes 139

Using Derived Classes 140

Constructors and Inheritance 142

The protected Access Modifier 142

The Base Class of Everything: object 143

Sealed Classes 143

Partial Classes 143

Table of Contents ix

C# Does Not Support Multiple Inheritance 144

22. Polymorphism, Virtual Methods, and Abstract Classes 145

Polymorphism 146

Revisiting the base Keyword 147

Abstract Base Classes 148

The new Keyword with Methods 149

23. Interfaces 150

What is an Interface? 150

Creating an Interface 151

Using Interfaces 151

Multiple Interfaces and Inheritance 152

24. Using Generics 154

The Motivation for Generics 154

What are Generics? 156

The List Class 157

Using the Dictionary Class 158

25. Making Generic Types 160

Creating Your Own Generic Types 161

Using Your Generic Type in Your Class 161

Constraints for Type Parameters 163

Generic Methods 165

Part 4: Advanced Topics

26. Namespaces and Using Directives 169

Namespaces 169

Fully Qualified Names 170

Using Directives 170

The Error 'The type or namespace X could not be found' 170

Name Collisions 172

27. Methods Revisited 174

Optional Parameters 174

Named Parameters 175

Variable Number of Parameters 176

The out and ref Keywords 176

28. Reading and Writing Files 179

All At Once 179

Text-Based Files 181

Binary Files 182

29. Error Handling and Exceptions 184

How Exception Handling Works 185

Catching Exceptions 186

Not Giving the Exception Variable a Name 187

Handling Different Exceptions in Different Ways 187

Throwing Exceptions 188

x Table of Contents

The finally Keyword 189

Some Rules about Throwing Exceptions 191

30. Delegates 192

Delegates: Treating Methods like Objects 192

Creating a Delegate 192

Using Delegates 193

The Action and Func Delegates 194

31. Events 196

Defining an Event 197

Raising an Event 198

Attaching and Detaching Event Handlers 200

Using the EventHandler<TEventArgs> Delegate 201

32. Threads 203

Threading Code Basics 204

Using ParameterizedThreadStart 206

Thread Safety 208

33. Asynchronous Programming in C# 5.0 210

Running Code Asynchronously with Tasks 211

The await and async Keywords 212

34. Operator Overloading 214

Overloading Operators 215

35. Indexers 219

How to Make an Indexer 219

Using Other Types as an Index 220

36. Extension Methods 222

Creating an Extension Method 223

37. Lambda Expressions 226

Lambda Expressions 228

Multiple and Zero Parameters 229

Type Inference and Explicit Types 229

Statement Lambdas 229

Scope in Lambda Expressions 230

38. Query Expressions 231

What is a Query Expression? 231

For SQL Programmers 232

LINQ and Query Expressions 232

Creating a Simple Query Expression 232

More Complicated where Clauses 233

Multiple from Clauses 234

Ordering Results 235

Retrieving a Different Type of Data 235

Method Call Syntax 235

We're Just Scratching the Surface 236

Table of Contents xi

39. Other Features in C# 237

Iterators and the Yield Keyword 238

Constants 240

Unsafe Code 241

Attributes 242

Caller Info Attributes 243

Bit Fields 244

Reflection 247

Using Statements and the IDisposable Interface 248

Preprocessor Directives 249

Implicitly Typed Local Variables and Anonymous Types 251

Nullable Types 252

Command Line Arguments 252

User-Defined Conversions 253

Part 5: Mastering the Tools

40. C# and the .NET Framework 257

Binary, Assembly, Languages, and Compiling 257

Virtual Machines and the CLR 258

Advantages of the CLR 261

The Drawbacks of Virtual Machines 261

The BCL and FCL Class Libraries 263

41. Getting the Most from Visual Studio 264

Windows 264

The Options Dialog 266

Basic and Expert Settings 267

Including and Excluding Files 267

Showing Line Numbers 267

IntelliSense 268

Basic Refactoring 269

Keyboard Shortcuts 269

42. Referencing Other Projects 271

Referencing Existing Projects 272

Adding a Reference to .NET Framework Assemblies 274

Adding a DLL 275

43. Handling Common Compiler Errors 276

Understanding Compiler Errors 276

Compiler Warnings 277

Common Compiler Errors 277

General Tips for Handling Errors 282

44. Debugging Your Code 284

Launching Your Program in Debug Mode 284

Viewing Exceptions 285

Editing Your Code While Debugging 286

Breakpoints 287

xii Table of Contents

Stepping Through Your Program 288

45. How Your Project Files are Organized 291

Visual Studio's Projects Directory 292

The Solution Directory 292

The Project Directory 293

Part 6: Wrapping Up

46. Try It Out! 297

Message from Julius Caesar 298

Reverse It! 298

Pig Dice 299

Connect Four 299

Conway's Game of Life 300

47. What's Next? 303

Other Frameworks and Libraries 303

Other Topics 305

Make Some Programs 305

Where Do I Go to Get Help? 305

Parting Words 306

Glossary 307

Index 321

3 Acknowledgements

The task of writing a book is like writing software. When you start, you know it's only going to take a few

weeks. It'll be easy, you think. But as you start working, you start seeing that you're going to need to make

changes, and lots of them. You need to rearrange entire chapters, add topics you hadn't even thought about,

and you discover that there's not even going to be a place in your book for that chapter called Muppets of

the Eastern Seaboard.

I couldn't have ever finished this book without help. I'll start by thanking Jack Wall, Sam Hulick, Clint

Mansell, and the others who wrote the music to the Mass Effect trilogy. (You think I'm joking, don't you?) I

listened to their music nearly incessantly as I wrote this book. Because of them, every moment of the

creation of this book felt absolutely epic.

I need to also thank the many visitors to my XNA tutorials site, who provided feedback on the early

versions of this work. In particular, I want to thank Jonathan Loh, Thomas Allen, Daniel Bickler and, Mete

ÇOM, who went way above and beyond, spending hours of their own personal time, reading through this

book and provided detailed critique and corrections. With their help, this book is far more useful and

valuable.

I also need to thank my mom and dad. Their confidence in me and their encouragement to always do the best

I can has caused me to do things I never could have done without them.

Most of all, I want to thank my beautiful wife, who was there to lift my spirits when the weight of writing

a book became unbearable, who read through my book and gave honest, thoughtful, and creative feedback

and guidance, and who lovingly pressed me to keep going on this book, day after day. Without her, this book

would still be a random scattering of Word documents, buried in some obscure folder on my computer,

collecting green silicon-based mold.

To all of you, I owe you my sincerest gratitude.

-RB Whitaker

4 Introduction

The Player's Guide

This book is not about playing video games. (Though programming is as fun as playing video games, for many

people.) Nor is it about making video games, specifically. (Though, you definitely can make video games with

C#.)

Instead, think of this book like a player's guide, but for a programming language. A player's guide is a

popular kind of book that is written to help game players:

 learn the basics of the game,

 prevent them from getting stuck,

 understand how the world they're playing in works,

 learn how to overcome the obstacles and enemies they face,

 point out common pitfalls they may face and locate useful items,

 and master the tools they're given.

This book accomplishes those same goals for the C# programming language. I'll walk you through the

language from the ground up, point out places where people often get stuck, provide you with hands-on

examples to explore, give you quizzes to take to ensure you're on the right track, and describe how to use

the tools that you'll need to create programs. I'll show you the ins and outs of the many features of C#,

describing why things work the way they do, rather than just simple mechanics and syntax.

In a Nutshell
 Describes the goals of this book, which is to function like a player's guide, not a comprehensive

cover-everything-that-ever-existed book.

 Breaks down how the book is organized from a high level perspective, as well as pointing out

some of the extra "features" of the book.

 Provides some ideas on how to get the most out of this book for programmers, beginners, and

anyone who is short on time.

Introduction xv

My goal is to provide you with the "dungeon map" to direct you as you begin delving into C#, while still

allowing you to mostly explore whatever you want, whenever you want.

I want to point out that this book is intentionally not called Everything you Need to Know about C#, or The

Comprehensive Guide to C#. (Note that if books with those titles actually exist, I'm not referring to them

specifically, but rather, to just the general idea of an all-encompassing book.) I'm here to tell you, when

you're done with this book, you'll still have lots to learn about C#.

But guess what? That's going to happen with any book you use (including those all-encompassing books).

Programming languages are complex creations, and there are enough dark corners and strange combinations

that nobody can learn everything there is to know about them. In fact, I've even seen the people who

designed the C# language say they just learned something new about it! For as long as you use C#, you'll

constantly be learning new things about it, and that's actually one of the things that makes programming

interesting.

I've tried to cover a lot of ground in this book, and with a little over 300 pages, anyone would expect that

to be quite a bit. And it is. But there are plenty of other books out there that are 800 or even 1200 pages

long. A book so heavy, you'll need a packing mule to carry it anywhere. That, or permanently place it on the

central dais of an ancient library, with a single beam of dusty light shining in on it through a hole in the

marble ceiling. Instead of all that, the goal of this book is effectiveness and clarity, not comprehensiveness,

in something that will fit both on your shelf and in your brain.

It is important to point out that this book is focused on the C# programming language, rather than libraries

for building certain specific application types. So while you can build desktop applications, web pages, and

games for the Xbox 360 with C#, we won't be discussing WPF, ASP.NET, XNA, or any other platform- or

framework-specific code. Instead, we'll focus on core C# code, without bogging you down with those

additional libraries at first. Once you've got the hang of C#, heading into one of those areas will be much

easier.

How This Book is Organized

This book is divided into six parts. Part 1 describes what you need to get going. You'll learn how to get set

up with the free software that you need to write code and make your first C# program.

Part 2 describes the basics of procedural programming—how to tell the computer, step-by-step, what to do

to accomplish tasks. It covers things like how information is stored (in variables), how to make decisions,

loop over things repeatedly, and put blocks of code that accomplish specific tasks into one reusable chunk

called a method. It also introduces the type system of the C# language, which is one of the key pieces of

C# programming.

Part 3 goes into object-oriented programming, introducing it from the ground up, but also getting into a lot

of the details that make it so powerful. Chapter 18, in my opinion, is the critical point of the book. It is

where we get into the details of making your own classes, which is the most powerful way C# provides for

building your own data types. Everything before this point is giving us the building blocks that we need to

understand and make classes. Everything that we do after is simply providing us with more ways to use

these custom-made types or showing how to use other classes that have already been made for us.

Part 4 covers some common programming tasks, as well as covering some of the more advanced features of

C#. For the most part, these topics are independent of each other, and once you've made it past that

critical point in Chapter 18, you should be able to do these at any time you want.

xvi Introduction

Part 5 changes gears, and covers more details about Visual Studio, which you use to create programs in C#,

additional information about the .NET Framework, and some tools, tricks, and information you can use as

you program.

Finally, Part 6 wraps up the book with some larger scale programs for you to try making, a chapter on where

to go next as you continue to learn C#, and a glossary of words that are defined throughout the book,

which you can use as a reference when you run across a word or phrase that you are unfamiliar with or have

forgotten about.

Try It Out!
Scattered throughout the book are a variety of sections labeled Try It Out! These sections present you

with a simple challenge problems and quizzes that gives you a chance to play around with some of the new

concepts in the chapter, and test your understanding. If you were in a class, you'd get things like this as

homework.

The purpose of these Try It Out! sections is to help you get some real world practice with the new

information. You can't learn to drive a car by reading the owner's manual, and you can't learn to program

without writing any code.

I strongly encourage you to at least spend a few minutes trying out each of these challenges to help you

understand what you're reading and to help you be sure that you've learned what you needed to.

If you've got something else you want to try out with the things you're learning instead of the challenges

I've provided, all the better. The only thing better than playing around with this stuff is doing something

with it that you have a personal interest in. If you want to explore a different direction, go for it!

At the end of the book, in Chapter 46, I have an entire chapter full of larger, tougher challenge problems

for you to try out. These problems involve combining concepts from many chapters together into one

program. Going through some or all of these as you're finishing up will be a great way to make sure you've

learned the most important things you needed to.

The most important thing to remember about these Try It Out! sections is that the answers are all online.

If you get stuck, or just want to compare your solution to someone else's, you can see my solutions at

starboundsoftware.com/books/c-sharp/try-it-out/. I should point out that just because your solution is

different from mine (or anyone else's) doesn't necessarily mean it is wrong. That's one of the best parts

about programming—there's always more than one way to do something.

In a Nutshell
At the beginning of each chapter, I summarize what it contains. These sections are designed to do the

following:

 Summarize the chapter to come.

 Show enough of the chapter so that an experienced programmer can know if they already know

enough to skip the chapter or if they need to study it in depth.

 Review the chapter enough to ensure that you got what you needed to from the chapter. For

instance, imagine you're about to take a test on C#. You can jump from chapter to chapter, reading

the In a Nutshell sections, and anything it describes that you didn't already know, you can then go

into the chapter and review it.

In Depth
On occasion, there are a few topics that are not critical to understand, as far as C# is concerned, but they

are an interesting topic that is related to the things you're learning. You'll find this information pulled out

Introduction xvii

into In Depth sections. These are never required reading, so if you're busy, skip ahead. If you're not too busy,

I think you'll find this additional information interesting, and worth taking the time to read.

Glossary
As you go through this book, you're going to learn a ton of new words and phrases. Especially if you're

completely new to programming in general. At the back of this book is a glossary that contains the

definitions for these words. You can use this as a reference in case you forget what a word means, or as you

run into new concepts as you learn C#.

Getting the Most from This Book

For Programmers
If you are a programmer, particularly one who already knows a programming language that is related to C#

(C, C++, Java, Visual Basic .NET, etc.) learning C# is going to be relatively easy for you.

C# has a lot in common with all of these languages. In fact, it's fair to say that all programming languages

affect and are inspired by other languages, because they evolve over time. C# looks and feels like a

combination of Java and C++, both of which have roots that go back to the C programming language. Visual

Basic .NET (VB.NET) on the other hand, looks and feels quite different from C# (it's based on Visual Basic,

and Basic before that) but because both C# and VB.NET are designed and built for the .NET Framework,

they have many of the same features, and there's almost a one-to-one correspondence between features

and keywords.

Because C# is so closely tied to these other languages, and knowing that many people may already know

something about these other languages, you'll see me point out how C# compares to these other languages

from time to time, throughout the book.

If you already know a lot about programming, you're going to be able to move quickly through this book,

especially the beginning, where you may find very few differences from languages you already know. To

speed the process along, read the In a Nutshell section at the start of the chapter. If you feel like you

already know everything it describes, it's probably safe to skip to the next chapter.

I want to mention a couple of chapters that might be kind of dangerous to skip. Chapter 6 introduces the

C# type system, including a few concepts that are key to building types throughout the book. Also, Chapter

16 is sort of a continuation on the type system, describing value and reference types. It's important to

understand the topics covered in those chapters. Those chapters cover some of the fundamental ways that

C# is different from these other languages, so don't skip over them.

For Busy People
One of the best parts about this book is that you don't need to read it all. Yes, that's right. It's not all

mandatory reading to get started with C#. You could easily get away with only reading a part of this book,

and still understand C#. In fact, not only understand it, but be able to make just about any program you can

come up with. This is especially true if you already know a similar programming language.

At a minimum, you should start from the beginning and read through Chapter 18. That covers the basics of

programming, all the way up to and including an introduction to making your own classes. (And if you're

already a programmer, you should be able to fly through those introductory chapters at a pretty good pace.)

The rest of the book could theoretically be skipped, though if you try to use someone else's code, you're

probably going to be in for some surprises.

xviii Introduction

Once you've gone through those 18 chapters, you can then come back and read the rest of the book in more

or less any order that you want, as you have extra time.

For Beginners
If you've never done any programming before, be warned: learning a programming language can be hard

work. The concepts in the first 18 chapters of this book are the most important to understand. Take

whatever time is necessary to really feel like you understand what you're seeing in these chapters. This gets

you all of the basics, and gets you up to a point where you can make your own types using classes. Like with

the For Busy People section above, Chapter 18 is the critical point that you've got to get to, in order to

really understand C#. At that point, you can probably make any program that you can think of, though the

rest of the book will cover additional tools and tricks that will allow you to do this more easily and more

efficiently.

After reading through these chapters, skim through the rest of the book, so that you're aware of what else

C# has. That's an important step if you're a beginner. It will familiarize you with what C# has to offer, and

when you either see it in someone else's code or have a need for it, you'll know exactly where to come back

to. A lot of these additional details will make the most sense when you have an actual need for it in a

program of your own that you're creating. After a few weeks or a few months, when you've had a chance to

make some real programs on your own, come back and go through the rest of the book in depth.

I Genuinely Want Your Feedback

Writing a book is a huge task, and no one has ever finished a huge task perfectly. There's the possibility of

mistakes, plenty of opportunities for inadvertently leaving you confused, or leaving out important details. I

was tempted to keep this book safe on my hard drive, and never give it out to the world, because then

those limitations wouldn't matter. But alas, my wife wouldn't let me follow Gandalf's advice and "keep it

secret; keep it safe," and so now here it is in your hands.

If you ever find any problems with this book, big or small, or if you have any suggestions for improving it, I'd

really like to know. After all, books can be a little like software, and there's always the opportunity for a

version 2.0 to make the book better in the future. Also, if you have positive things to say about the book,

I'd love to hear about that too. There's nothing quite like hearing that all of the work you have done has

helped somebody.

To give feedback of any kind, please visit starboundsoftware.com/books/c-sharp/feedback.

This Book Comes with Online Content

On my website, I have a small amount of additional content that you might find useful. For starters, as

people submit feedback, like I described in the last section, I will post corrections and clarifications as

needed on this book's errata page: starboundsoftware.com/books/c-sharp/errata.

Also on my site, I will post my own answers for all of the Try It Out! sections found throughout this book.

This is helpful, because if you get stuck, or just want something to compare your answers with, you can

visit this book's site and see a solution. To see these answers, go to: starboundsoftware.com/books/c-

sharp/try-it-out/.

Additional information or resources may be found at starboundsoftware.com/books/c-sharp.

Part 1
Getting Started

The world of C# programming lies in front of you, waiting to be explored. In Part 1 of this book, within

just a few short chapters, we'll do the following:

 Get a quick introduction to what C# is (Chapter 1)

 Get set up to start making C# programs (Chapter 2)

 Write our first program (Chapter 3)

 Dig into the fundamental parts of C# programming (Chapters 3 and 4)



1
1 The C# Programming

Language

I'm going to start off this book with a real brief introduction to C#. If you're already a programmer, and

you've read the Wikipedia pages on C# and the .NET Framework, skip ahead to the next chapter.

On the other hand, if you're new to programming in general, or you're still a little vague on what exactly C#

or the .NET Framework is, then this is the place for you.

I should point out that we'll get into a whole lot of detail about how the .NET Framework functions, and

what it provides for you as a programmer in Chapter 40. This chapter will just provide a quick overview of

the basics.

What Exactly is C#?

Computers only understand binary: 1's and 0's. All of the information they keep track of is ultimately

nothing more than a glorified pile of bits. All of the things they do boil down to instructions, written with

1's and 0's.

But humans are notoriously bad at doing anything with a random pile of billions of 1's and 0's. So rather

than doing that, we created programming languages, which are based on human languages (usually English)

and structured in a way that allows you to give instructions to the computer. These instructions are called

source code, and are made up of simple text files.

In a Nutshell
 Describes the general idea of programming, and goes into more details about why C# is a good

language.

 Describes the core of what the .NET Framework is.

 Outlines how your C# source code is turned into IL code by the compiler, then JIT compiled by

the CLR as the program is running.

4 Chapter 1 The C# Programming Language

When the time is right, your source code will be handed off to a special program called a compiler, which is

able to take it and turn it into the binary that the computer understands, typically in the form of an .exe

file. In this sense, you can think of the compiler as a translator from your source code to the binary machine

instructions that the computer knows.

C# is one of the most popular of all of the programming languages available. There are literally thousands,

maybe even tens of thousands of these languages, and each one is designed for their own purposes. C# is a

simple general-purpose programming language, meaning you can use it to create pretty much anything,

including desktop applications, server-side code for websites, and even video games.

C# provides an excellent balance between ease of use and power. There are other languages that provide

less power and are easier to use (like Java) and others that provide more power, giving up some of its

simplicity (like C++). Because of the balance it strikes, it is the perfect language for nearly everything that

you will want to do, so it's a great language to learn, whether it's your first or your tenth.

What is the .NET Framework?

C# relies heavily on something called the .NET Framework. The .NET Framework is a large and powerful

platform, which we'll discuss in detail in Chapter 40. (You can go read it as soon as you're done with this

chapter, if you want.)

The .NET Framework primarily consists of two parts. The first part is the Common Language Runtime, often

abbreviated as the CLR. The CLR is a virtual machine—a special type of software program that functions as

though it is an actual computer. C# code is actually executed by the CLR, instead of being run by the actual

physical computer. There are, of course, benefits and drawbacks to this kind of a setup, which we'll discuss

in Chapter 40, but it turns out to be a good idea for everything except low level stuff, like an operating

system or a device driver. C# is a bad choice for things like that. (Try C or C++ instead.)

I should also point out that though running your code through a virtual machine may make it a bit slower, in

most cases, this isn't enough to matter. In some situations, it could actually end up being faster. In other

cases, you can call outside code that not running on a virtual machine. The bottom line is, don't stress too

much about if the CLR will be fast enough.

Because C# code runs on the .NET Framework, the process your code goes through before executing is a

little more complex than what I described earlier. Rather than just a single step to compile your code to

binary executable code, it goes through two steps. Here's what happens:

 The C# compiler turns your source code into Common Intermediate Language (CIL or IL for short).

 This IL code is packaged into a .exe file or .dll file, which can be shared with others.

 When it is time to run your program, the IL code in your .exe or .dll will be handed off to the CLR to

run it.

 As your program is running, the CLR will look at the IL code and compile it into binary executable

code that the computer it is running on understands. For each block of code you have, this will only

happen once each time you run your program—the first time it needs it. This is called Just-in-Time

compiling, or JIT compiling.

The other piece of the .NET Framework is an absolutely massive library of code that you can reuse within

your own programs, to accelerate the development of whatever you are working on. This library is much

bigger than what you typically find packaged with a programming language (though Java also has a library

of comparable size). It is impossible to cover all of this code in this or any book, though we'll cover the most

important stuff. Just keep this in mind, and before trying to build your own code for what seems like a

common task, search the Internet to see if this code already exists as a part of the core C# library.

C# and .NET Versions 5

C# and .NET Versions

The latest version of the C# programming language is version 5, while the newest version of the .NET

Framework is version 4.5. The two were released at the same time, in August 2012. In most cases, these

latest versions are what you will want to use for new programs.

There are very few actual changes to the C# language in this latest release. There are more changes and

additions to the .NET Framework's vast code library (the Base Class Library). This book is focused on the C#

language, and as such, covers all of the features of C# itself, including the new features in version 5. While

this book doesn't cover the entire Base Class Library, parts that are particularly important or useful,

including things that are new in .NET 4.5, are discussed throughout the book.

2
2 Installing Visual Studio

To make your own programs, people usually use a program called an Integrated Development Environment

(IDE). An IDE combines together all of the tools you will commonly need to make software, including a

special text editor designed specifically for source code files, a compiler, and other various tools to help

you manage the files in your project.

With C# in particular, nearly everyone chooses to use some variation of Visual Studio, which is made by

Microsoft. There are actually lots of different flavors of Visual Studio (including a variety of free ones),

tailored for different tasks and programmers, and in this chapter, I'll help guide you through the process of

picking the right one for whatever you're trying to do.

Versions of Visual Studio

The 2012 family of Visual Studio were released in August of 2012. There are lots of options to choose

from, and so I want to take a little bit of time to outline the various versions and what they're good for, to

help you decide which one to start with.

In a Nutshell
 To program in C#, we will need a program that allows us to write C# code and run it. That

program is Microsoft Visual Studio.

 A variety of versions of Visual Studio exist, including both free versions that specialize in

specific types of programs (desktop, web, metro-style apps, and phone) and full, paid-for

versions that combine them all in one, and add some extra nice features.

 You do not need to spend money to make C# programs.

 This chapter walks you through the various versions of Visual Studio to help you decide which

one to use, but in short, as you're getting started, you should consider either Visual Studio

2012, if you have the money for it, or the free Visual Studio Express 2012 for Desktop, at least

while you're getting started. Once you know the basics of C#, you can then move on to the

other more specialized express editions.

Versions of Visual Studio 7

Microsoft has gone out of their way to make sure that the versions all work in a similar way (as similar as

possible) so that to a large degree, once you know how one works, you know how they all work. More

importantly, because of this, while you're going through this book, it largely won't matter which one you

select. Everything we cover in this book will work in all of the versions with a couple of exceptions and

variations, which I'll point out as we go.

Along those lines, remember that throughout this book, when I use the name "Visual Studio", I'm referring

to any of the versions described here, including the Visual Studio Express versions.

Visual Studio 2012
This is the latest and greatest, but it costs money. (I'll tell you about the free variations in a second.) It

allows you to use everything including the new .NET 4.5 stuff, and it combines nearly everything that you'd

want to do with C#. The full Visual Studio 2012 comes in various levels, including Professional (the "low"

end), Premium, and Ultimate. Professional costs about $500, while Ultimate costs over $6000. I won't get

into too many details on the differences between these versions. You're reading this book because you're

just getting started, and so probably anything above Professional would be overkill for now.

This is the version to get if you have the money for it, but nothing we cover in this book will ever need the

full, paid-for version. In fact, between the various free express editions of Visual Studio, you can make

pretty much any program that you can with the full "pro" versions. This pro version just makes it easier.

You can find this version here: http://www.microsoft.com/visualstudio/eng/downloads#professional

Visual Studio Express 2012 for Windows Desktop

If you're not willing to spend the money (you're not alone) the express editions offer a nice free alternative.

There are a variety of express editions available. While the full Visual Studio allows you to make any

application of any type, all from the same IDE, the express editions split things by project type.

For instance, there's an express edition that is designed specifically for web-based application development

and one for Windows phone development. The web version makes it easy to do web-based development, but

does not include anything for Windows phone development, and so on. We'll get into the details on these

other express editions in a second.

The one that you should start with is Visual Studio Express 2012 for Windows Desktop. This is because this

version allows you to make console applications, which is the simplest type of program, and the place we'll

start in this book. You can get Visual Studio Express 2012 for Windows Desktop from here:

http://www.microsoft.com/visualstudio/eng/downloads#d-2012-express

Because there are other version of Visual Studio Express 2012, be sure to get the one that says Windows

Desktop instead of Web, Windows 8, or the Team Foundation Server Express.

Other Members of the Visual Studio Family
There are other express versions of the Visual Studio family, and while I still recommend starting with

Visual Studio Express 2012 for Windows Desktop to start, you will want to consider these other express

versions as you progress.

This includes Visual Studio Express 2012 for Web, which is designed for making C# based websites using

ASP.NET, Visual Studio Express for Windows Phone, which is built for making apps for the Windows 7 Phone,

and Visual Studio Express 2012 for Windows 8, which is designed for making the new "Metro"-style

applications that run on Windows 8. You can download these from the same link as I provided above for

Visual Studio Express 2012 for Windows Desktop.

8 Chapter 2 Installing Visual Studio

For comparison purposes, Visual Studio 2012 (the full version) is the equivalent of all of these express

versions combined together, plus a variety of additional features, plus the ability to install (and create)

add-ons to extend Visual Studio.

The Installation Process

Regardless of which version of Visual Studio you select, you should expect similar installation processes,

with only a few minor differences between them. Go to the web page that I pointed out earlier and

download the version of your choice.

Once downloaded, start the installer and follow the steps presented to you. The installation process takes

several minutes, depending on how fast your Internet connection is. (There is an optional download that lets

you get it all at once, if you won't have Internet access while you install.)

Once installed, it may place an icon on your desktop that you can use, but it will also put it in your Start

Menu under All Programs. Look for it under Visual Studio 2012 or Visual Studio Express 2012, depending on

what you installed. You can go there to start running your version of Visual Studio.

For all of the versions, you should also expect to have it ask you about a registration key. While all of the

express editions are free and don't require payment, Microsoft is trying to keep track of how many people

have their products installed, so when you get a chance, follow their instructions to go online and get a

registration key. Otherwise, you'll only be able to use the program for a limited time.

In the next chapter we'll take a brief look at how Visual Studio works, and throughout this book, we'll

continue to learn some of the tasks that you can do with the various versions of Visual Studio. While you're

going through this book, it almost doesn't matter what version you choose. As far as the basics go, they're

all very similar.

Throughout this book, I'm going to show you screenshots from Visual Studio 2012. Depending on which

version you chose, things might look a little bit different, but for the most part, you should expect to see

similar things to what you see in the screenshots. In the places that the versions are significantly

different, I'll point out those differences so that you're never lost.

Try It Out!
Install Visual Studio. Take the time now to choose a version of Visual Studio and install it, so that you're

ready to begin making awesome programs in the next chapter.

Side Note
Visual Studio Alternatives. Almost everyone who writes programs in C# use some version of Visual

Studio. It is generally considered the best and most comprehensive option. If you want an alternative,

there are other choices. Just keep in mind that this book will assume you are using Visual Studio. Here

are a few alternates:

 SharpDevelop: http://www.icsharpcode.net/OpenSource/SD/

 MonoDevelop: http://monodevelop.com/

http://www.icsharpcode.net/OpenSource/SD/
http://monodevelop.com/

3
3 Hello World: Your First C#

Program

In this chapter we'll make our very first C# program. Our first program needs to be one that simply prints

out some variation of "Hello World!" or we'll make the programming gods mad. It's tradition to make your

first program print out a simple message like this, whenever you learn a new language. It's simple, yet still

gives us enough to see the basics of how the programming language works. Also, it gives us a chance to

compile and run a program, with very little chance for introducing bugs.

So that's where we'll start. We'll create a new project and add in a single line to display "Hello World!" Once

we've got that, we'll compile and run it, and you'll have your very first program!

After that, we'll take a minute and look at the code that you have written in more detail before moving on

to more difficult, but infinitely more awesome stuff in the future!

In a Nutshell
 Start a new C# Console Application by going to File > New Project..., choosing the Console

Application template, and giving your project a name.

 Inside of the Main method, you can add code to write out stuff using a statement like

Console.WriteLine("Hello World!");

 Compile and run your program with F5 or Ctrl + F5.

 The template includes code that does the following:

 using directives make it easy to access chunks of previously written code in the

current program.

 The namespace block puts all of the contained code into a single collection.

 The code we actually write goes into the Program class in a method called Main, which

the C# compiler recognizes as the starting point for a program.

10 Chapter 3 Hello World: Your First C# Program

Creating a New Project

Let's get started with our first C# program! Open up Visual Studio, which we installed in Chapter 2.

(Remember when I refer to Visual Studio, I'm referring to any member of the Visual Studio family that we

discussed in Chapter 2, including any express editions.)

When the program first opens, you will see the Start Page come up. To create a new project, you can either

select the "New Project..." button on the Start Page, or you can go up to the menu and choose File > New

Project... in the express editions, or File > New > Project... in the full Visual Studio, from the menu bar.

Once you have done this, a dialog will appear asking you to specify a project type and a name for the

project. This dialog is shown below:

On the left side, you will see a few categories of templates to choose from. Depending on what version of

Visual Studio you have installed, you may see different categories here, but the one you'll want to select is

the Visual C# category, which will list all C#-related templates that are installed.

Once that is selected, in the list in the top-center, find and select the Console Application template. The

Console Application template is the simplest template and it is exactly where we want to start. For all of

the stuff we will be doing in this book, this is the template we'll be using.

If you chose one of the other 2012 express editions, you won't see this template. It's for this reason that I

recommend starting with Visual Studio 2012 or Visual Studio Express 2012 for Windows Desktop. The other

2012 express editions technically have the capability of building and running console applications, but a

template isn't provided, which definitely makes things more complicated.

As you finish up this book, if you want to start doing things like making programs with a graphical user

interface (GUI), XNA games, or web-based development, you will be able to put these other templates to

good use.

A Brief Tour of Visual Studio 11

At the bottom of the dialog, type in a name for your project. I've called mine "HelloWorld." Your project will

be saved in a directory with this name. It doesn't really matter what you call a project, but you want to

name it something intelligent, so you can find it later when you are looking at a list of all of your projects.

By default, Visual Studio tries to call your programs "ConsoleApplication1" or "ConsoleApplication2." If you

haven't chosen a good name, you won't know what each of these do. By default, projects are saved under

your Documents or My Documents directory (Documents/Visual Studio 2012/Projects/).

Finally, press the OK button to create your project! After you do this, you may need to wait for a little bit

for Visual Studio to get everything set up for you.

A Brief Tour of Visual Studio

Once your project has loaded, it is worth at least a brief discussion of what you see before you. We'll look in

depth at how Visual Studio works later on (Chapter 41) but it is worth a brief discussion right now.

By this point, you should be looking at a screen that looks something like this:

Depending on which version of Visual Studio you installed, you may see some slight differences, but it

should look pretty similar to this.

In the center should be some text that starts out with using System;. This is your program's source code! It

is what you'll be working on. We'll discuss what it means, and how to modify it in a second. We'll spend most

of our time in this window.

On the right side is the Solution Explorer. This shows you a big outline of all of the files contained in your

project, including the main one that we'll be working with, called "Program.cs". The *.cs file extension means

it is a text file that contains C# code. If you double click on any item in the Solution Explorer, it will open in

the main editor window. The Solution Explorer is quite important, and we'll use it frequently.

12 Chapter 3 Hello World: Your First C# Program

As you work on your project, other windows may pop up as they are needed. Each of these can be closed by

clicking on the 'X' in the upper right corner of the window.

If, by chance, you are missing a window that you feel you want, you can always open it by going to View >

Other Windows and choosing the window you want to see. For right now, if you have the main editor

window open with your Program.cs file in it, and the Solution Explorer, you should be good to go.

Building Blocks: Projects, Solutions, and Assemblies

As we get started, it is worth defining a few important terms that you'll be seeing spread throughout this

book. In the world of C#, you'll commonly see the words solution, project, and assembly, and it is worth

taking the time upfront to explain what they are, so that you aren't lost.

These three words describe the code that you're building in different ways. We'll start with a project. A

project is simply a collection of source code and resource files that will all eventually get built into the

same executable program. A project also has additional information telling the compiler how to build it.

When compiled, a project becomes an assembly. In nearly all cases, a single project will become a single

assembly. An assembly shows up in the form of a .exe file or a .dll file. These two different extensions

represent two different types of assemblies, and are built from two different types of projects (chosen in

the project's settings).

A process assembly appears as a .exe file. It is a complete program, and has a starting point defined, which

the computer knows to run when you start up the .exe file. A library assembly appears as a .dll file. A .dll

file does not have a specific starting point defined. Instead, it contains code that other programs can

access on the fly.

Throughout this book, we'll be primarily creating and working with projects that are set up to be process

assemblies that compile to .exe files, but you can configure any project to be built as a library assembly

(.dll) instead.

Finally, a solution will combine multiple projects together to accomplish a complete task or form a complete

program. Solutions will also contain information about how the different projects should be connected to

each other. While solutions can contain many projects, most simple programs (including nearly everything

we do in this book) will only need one. Even many large programs can get away with only a single project.

Looking back at what we learned in the last section about the Solution Explorer, you'll see that the Solution

Explorer is showing our entire solution as the very top item, which it is labeling "Solution 'HelloWorld' (1

project)". Immediately underneath that, we see the one project that our solution contains: "HelloWorld".

Inside of the project are all of the settings and files that our project has, including the Program.cs file that

contains source code that we'll soon start editing.

It's important to keep the solution and project separated in your head. They both have the same name and it

can be a little confusing. Just remember the top node is the solution, and the one inside it is the project.

Modifying Your Project

Now that our program is saved, we're ready to make our program actually do something. In the center of

your Visual Studio window, you should see the main text editor, containing text that should look identical to

this:

using System;

Modifying Your Project 13

using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

In a minute we'll discuss what all of that does, but for now let's go ahead and make our first change—adding

something that will print out the message "Hello World!"

Right in the middle of that code, you'll see three lines that say static void Main(string[] args) then a

starting curly brace ('{') and a closing curly brace ('}'). We want to add our new code right between the two

curly braces.

Here's the line we want to add:

Console.WriteLine("Hello World!");

So now our program's full code should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

We've completed our first C# program! Easy, huh?

Try It Out!
Hello World! It's impossible to understate how important it is to actually do the stuff outlined in this

chapter. Simply reading text just doesn't cut it. In future chapters, most of these Try It Out! sections

will contain extra things to do, beyond the things described in the actual body of the chapter. But for

right now, it is very important that you simply go through the process explained in this chapter.

So follow through this chapter, one step at a time, and make sure you're understanding the concepts

that come up, at least at a basic level.

14 Chapter 3 Hello World: Your First C# Program

Compiling and Running Your Project

Your computer doesn't magically understand what you've written. Instead, it understands special

instructions that are composed of 1's and 0's called binary. Fortunately for us, Visual Studio includes a

thing called a compiler. A compiler will take the C# code that we've written and turn it into binary that the

computer understands.

So our next step is to compile our code and run it. Visual Studio will make this really easy for us.

To start this process, press F5 or choose Debug > Start Debugging from the menu.

There! Did you see it? Your program flashed on the screen for a split second! (Hang on... we'll fix that in a

second. Stick with me for a moment.)

We just ran our program in debug mode, which means that if something bad happens while your program is

running, it won't simply crash. Instead, Visual Studio will notice the problem, stop in the middle of what's

going on, and show you the problem that you are having, allowing you to debug it. We'll talk more about

how to actually debug your code later on, in Chapter 44.

So there you have it! You've made a program, compiled it, and executed it!

If it doesn't compile and execute, double check to make sure your code looks like the code above.

Help! My program is running, but disappearing before I can see it!
You likely just ran into this problem when you executed your program. You push F5 and the program runs, a

little black console window pops up but only for a split second before disappearing again, and you have no

clue what happened.

There's a good reason for that. Your program ran out of things to do, so it finished and closed on its own. (It

thinks it's so smart, closing on its own like that.)

But we're really going to want a way to make it so that doesn't happen. After all, we're left wondering if it

even did what we told it to. There are two solutions to this, each of which has its own strengths and

weaknesses.

Approach #1: When you run it without debugging, console programs like this will always pause before

closing. So one option is to run it without debugging. This option is called "Release" mode. We'll cover this in

a little more depth later on, but the bottom line is that your program runs in a streamlined mode which is

faster, but if something bad happens, your program will just die, without giving you the chance to debug it.

You can run in release mode by simply pressing Ctrl + F5 (instead of just F5). Do this now, and you'll see

that it prints out your "Hello World!" message, plus another message that says "Press any key to continue...",

which does exactly what it says and waits for you before closing the program.

The Visual Studio Express editions don't have a menu option to run in release mode by default, so you'll need

to use the keyboard shortcut above. If you have Expert Settings turned on (see Chapter 41), it would show

up as Debug > Start Without Debugging. I'll explain how to enable expert settings later on, when we discuss

Visual Studio in depth. (The full Visual Studio automatically runs in a mode like Expert Settings, so if you're

using the full Visual Studio, you will see that menu item.)

But there's a distinct disadvantage to running in release mode. We're no longer running in debug mode, and

so if something happens with your program while it is running, your application will crash and die. (Hey, just

like all of the other "cool" programs out there!) Which brings us to an alternative approach:

A Closer Look at Your Program 15

Approach #2: Put another line of code in that makes the program wait before closing the program. You can

do this by simply adding in the following line of code, right below where you put the

Console.WriteLine("Hello World!"); statement:

Console.ReadKey();

So your full code, if you use this approach, would look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.ReadKey();
 }
 }
}

Using this approach, there is one more line of code that you have to add to your program (in fact, every

console application you make), which can be a little annoying. But at least with this approach, you can still

run your program in debug mode, which you will soon discover is a really nice feature.

Fortunately, this is only going to be a problem when you write console apps. That's what we'll be doing in

this book, but before long, you'll probably be making windows apps, XNA games, or awesome C#-based

websites, and this problem will go away on its own. They work in a different way, and this won't be an issue.

A Closer Look at Your Program

Now that we've got our program running, let's take a minute and look at each of the lines of code in the

program we've made. I'll try to explain what each one does, so that you'll have a basic understanding of

everything in your simple "Hello World" program.

Using Directives

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Try It Out!
See Your Program Twice. I've described two approaches for actually seeing your program execute. Take

a moment and try out each approach. This should only take a couple of minutes, and you'll get an idea of

how these two different approaches work.

Also, try combining the two and see what you get. Can you figure out why you need to push a key twice

to end the program?

16 Chapter 3 Hello World: Your First C# Program

The first few lines of your program all start with the keyword using. A keyword is simply a reserved word,

or a magic word that is a built in part of the C# programming language. It has special meaning to the C#

compiler, which it uses to do something special. The using keyword tells the compiler that there is a whole

other pile of code that someone has that we want to be able to access. (This is actually a bit of a

simplification, and we'll sort out the details in Chapter 26.)

So when you see a statement like using System; you know that there is a whole pile of code out there, that

is labeled "System," which our code will want to use. Without this line, the C# compiler won't know where to

find things and it won't be able to run your program. You can see that there are four using directives in your

little program that are added by default. We can leave these exactly the way they are for the near future.

Namespaces, Classes, and Methods
Below the using directives, you'll see a collection of curly braces ('{' and '}') and you'll see the keywords

namespace, class, and in the middle, the word Main. Namespaces, classes, and methods (which Main is an

example of) are ways of grouping related code together at various levels. Namespaces are the largest

grouping, classes are smaller, and methods are the smallest. We'll discuss each of these in great depth as we

go through this book, but it is worth a brief introduction now. We'll start at the smallest and work our way

up.

Methods are a way of consolidating a single task together in a reusable block of code. In other programming

languages, methods are sometimes called functions, procedures, subroutines. We'll get into a lot of detail

about how to make and use methods as we go, but the bulk of our discussion about methods will be in

Chapter 15, with some extra details in Chapter 27.

Right in the middle of the generated code, you'll see the following:

static void Main(string[] args)
{
}

This is a method, which happens to have the name Main. I won't get into the details about what everything

else on that line does yet, but I want to point out that this particular setup for a method makes it so that

C# knows it can be used as the starting point for your program. Since this is where our program starts, as

we add code in here, the computer is going to run it. For the next few chapters, everything we do will be

right in here.

You'll also notice that there are quite a few curly braces in our code. Curly braces mark the start and end of

code blocks. Every starting curly brace ('{') will have a matching ending curly brace ('}') later on. In this

particular part, the curly braces mark the start and end of the Main method. As we discuss classes and

namespaces, you'll see that they also use curly braces to mark the points where they begin and end. From

looking at the code, you can probably already see that these code blocks can contain other code blocks to

form a sort of hierarchy.

When one thing is contained in another, it is said to be a member of it. So the Program class is a member of

the namespace, and the Main method is a member of the Program class.

Classes are a way of grouping together a set of data and methods that work on that data into a single

reusable package. Classes are the fundamental building block of object-oriented programming. We'll get into

this in great detail in Part 3, especially Chapters 17 and 18.

In the generated code, you can see the beginning of the class, marked with:

class Program
{

Whitespace Doesn't Matter 17

And later on, after the Main method which is contained within the class, you'll see a matching closing curly

brace:

}

Program is simply a name for the class. It could have been just about anything else. The fact that the Main

method is contained in the Program class indicates that it belongs to the Program class.

Namespaces are the highest level grouping of code. Many smaller programs may only have a single

namespace, while larger ones often divide the code into several namespaces based on the feature or

component that the code is used in. We'll spend a little extra time detailing namespaces and using directives

in Chapter 26.

Looking at the generated code, you'll see that our Program class is contained in a namespace called

"HelloWorld":

namespace HelloWorld
{
 ...
}

Once again, the fact that the Program class appears within the HelloWorld namespace means that it

belongs to that namespace, or is a member of it.

Whitespace Doesn't Matter

In C#, whitespace, such as spaces, new lines, and tabs don't matter to the C# compiler. This means that

technically, you could write every single program on only one line! But don't do that. That would be a pretty

bad idea.

Instead, you should use whitespace to help make your code more readable, both for other people who may

look at your code, or even yourself, a few weeks later, when you've forgotten what exactly your code was

supposed to do.

I'll leave the decision about where to put whitespace up to you, but as an example, compare the following

pieces of code that do the same thing:

static void Main(string
[] args) { Console
.WriteLine (
 "Hello World!");}

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

For the most part, in this book I'll use the style in the last block, because I feel it is the easiest to read.

Semicolons

You may have noticed that the lines of code we added all ended with semicolons (';').

This is often how C# knows it has reached the end of a statement. A statement is a single step or

instruction that does something. We'll be using semicolons all over the place as we write C# code.

18 Chapter 3 Hello World: Your First C# Program

This chapter may have seemed long, and we haven't even accomplished very much. That's OK, though. We

have to start somewhere, and this is where everyone starts. We have now made our first C# program,

compiled it, and executed it! And just as importantly, we now have a basic understanding of the starter

code that was generated for us. This really gets us off on the right foot. We're off to a great start, but

there's so much more to learn!

Try It Out!
Evil Computers. In the influential movie 2001: A Space Odyssey, an evil computer named HAL 9000

takes over a Jupiter-bound spaceship, locking Dave, the movie's hero, out in space. As Dave tries to get

back in, to the ship, he tells HAL to open the pod bay doors. HAL's response is "I'm sorry, Dave. I'm afraid

I can't do that." Since we know not all computers are friendly and happy to help people, modify your

Hello World program to say HAL 9000's famous words, instead of "Hello World!"

4
4 Comments

In this short chapter we'll cover the basics of comments. We'll look at what they are, why you should use

them, and how to do them (in three different ways).

Unlike many other C# books, which ignore comments or only briefly mentions them, I've decided to put them

front and center, describing them in detail right near the beginning of the book—they really are that

important.

What is a Comment?

At its core, a comment is text that is put somewhere for a human to read. Comments are ignored entirely by

the computer.

Why Should I Use Comments?

I mentioned in the last chapter that whitespace should be used to help make your code more readable.

Writing readable and understandable code is a running theme you'll see in this book. Writing code is actually

far easier than reading it, or trying understanding what it does. Whenever you get the chance, you will

want to do whatever you can to make your code easier to read. Comments will go a very long way towards

making your code more readable and understandable.

You should use comments to describe what you are doing so that when you come back to a piece of code

that you wrote after several months (or even just days) you'll know what you were doing.

Quick Start
 Comments are a way for you to add text for other people (and yourself) to read. Computers

ignore comments entirely.

 Comments are made by putting two slashes (//) in front of the text.

 Multi-line comments can also be made by surrounding it with asterisks and slashes, like this: /*

this is a comment */

20 Chapter 4 Comments

Writing comments—wait, let me clarify—writing good comments is a key part of writing good code.

Comments explain tricky sections of code, or explain what things are supposed to do. They are a primary

way for a programmer to communicate with another programmer who is looking at their code. The other

programmer may even be on the other side of the world and working for a different company five years

later!

Comments can explain what you are doing, as well as why you are doing it. This helps other programmers,

including yourself, know what was going on in your mind at the time.

In fact, even if you know you're the only person who will ever see your code, you should still put comments

in it. Do you remember what you ate for lunch a week ago today? Neither do I. Do you really think that you'll

remember what your code was supposed to do a week after you write it?

Writing comments makes it so that you (and others) can understand and remember what the code does, how

it does it, why it does it, and you can even document why you did it one way and not another.

How to Make Comments in C#

There are three basic ways to make comments in C#. For now, we'll only really consider two of them,

because the third applies only to things that we haven't looked at yet. We'll look at the third form of

making comments in Chapter 15.

The first way to create a comment is to start a line with two slashes: //. Anything on the line following the

two slashes will be ignored by the computer. In Visual Studio the comments change color—green, by

default—to indicate that the rest of the line is a comment.

Below is an example of a comment:

// This is a comment, where I can describe what happens next...
Console.WriteLine("Hello World!");

Using this same thing, you can also start a comment at the end of a line of code, which will make it so the

text after the slashes are ignored:

Console.WriteLine("Hello World!"); // This is also a comment.

A second method for creating comments is to use the slash and asterisk combined, surrounding the

comment, like this:

Console.WriteLine("Hi!"); /* This is a comment that ends here... */

This can be used to make multi-line comments like this:

/* This is a multi-line comment.
 It spans multiple lines.
 Isn't it neat? */

Of course, you can do multi-line comments with the two slashes as well, it just has to be done like this:

// This is a multi-line comment.
// It spans multiple lines.
// Isn't it neat?

In fact, most C# programmers will probably encourage you to use the single line comment like this (or the

third form that we'll look at in Chapter 15) instead of the /* */ version, though it is up to you.

How to Make Good Comments 21

The third method for creating comments is called XML Documentation Comments, which we'll discuss later,

because they're used for things that we haven't discussed yet. For more information about XML

Documentation Comments, see Chapter 15.

How to Make Good Comments

Commenting your code is easy; making good comments is a little trickier. I want to take a little time and

describe some basic principles to help guide you in making comments that will be more effective.

My first rule for making good comments is to write the comments for a particular chunk of code as soon as

you've got the piece more or less complete. A few days or a weekend away from the code and you may no

longer really remember what you were doing with it. (Trust me, it happens!)

Second, write comments that add value to the code. Here's a bad example of a comment for a line of code:

// Uses Console.WriteLine to print "Hello World!"
Console.WriteLine("Hello World!");

Everything the comment says, we already knew. You might as well not even add it. Here's a better example.

// Printing "Hello World!" is a very common first program to make.
Console.WriteLine("Hello World!");

This helps to explain why we did this instead of something else.

Third, you don't need a comment for every single line of code, but it is helpful to have one for every section

of related code. I would venture a guess that it is possible to over-comment, but the dangers of over-

commenting code matter a whole lot less than the dangers of under-commented (or completely

uncommented code).

When you write comments, take the time put in anything that you or another programmer may want to

know if they come back and look at the code later. This may include a human-readable description of what is

happening, it may include describing the general method (or algorithm) you're using to accomplish a

particular task, and it may explain why you're doing something. You may also find times where it will be

useful to include why you aren't using a different approach, or to warn another programmer (or yourself!)

that a particular chunk of code is tricky, and you shouldn't mess with it unless you really know what you're

doing.

When used appropriately, comments are a programmer's best friend.

Try It Out!
Comment ALL the things! While it may be overkill, in the name of putting everything we've learned so

far, go back to your Hello World program from the last chapter and add in comments for each part of

the code, describing what each piece is for. This will be a good review of what the pieces of that simple

program do, as well as give you a chance to play around with some comments. Try out both ways of

making comments (// and /* */) to see what you like.

This is a preview. These pages have been

excluded from the preview.

132 Chapter 20 Structs

20
20 Structs

A couple of chapters ago, we introduced classes. These are complex reference types that you can define and

build from the ground up. C# has a feature call structs or structures which look very similar to classes

organizationally, but they are value types instead of reference types.

In this chapter, we'll take a look at how to create your own struct, as well as discuss how to decide if you

need a struct or a class. We'll also discuss something that may throw you for a loop: all of the built-in types

that we've been working with since we first learned about types are actually all aliases for structures (or a

class in the case of the string type).

Creating a Struct

Creating a struct is very similar to creating a class. The following code defines a simple struct, and an

identical class that does the same thing:

struct TimeStruct
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

In a Nutshell
 A struct or structure is similar to a class in terms of the way it is organized, but a struct is a

value type, not a reference type.

 Structs should be used to store compound data (composed of more than one part) that does not

involve a lot of complicated methods and behaviors.

 All of the simple types are structs.

 The primitive types are all aliases for certain pre-defined structs and classes.

Structs vs. Classes 133

 public int CalculateMinutes()
 {
 return seconds / 60;
 }
}

class TimeClass
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;
 }
}

You can see that the two are very similar—in fact the same code is used in both, with the single solitary

difference being we use the struct keyword to create a struct, while we use the class keyword to create a

class.

Structs vs. Classes

Since the two are so similar in appearance, you're probably wondering how the two are different.

The answer to this question is simple: structs are value types, while classes are reference types. If you

didn't fully grasp that concept, back when we discussed it in Chapter 16, it is probably worth going back

and taking a second look.

While this is a single difference in theory, this one change makes a world of difference. For example, a

struct uses value semantics instead of reference semantics. When you assign the value of a struct from one

variable to another, the entire struct is copied. The same thing applies for passing one to a method as a

parameter, and returning one from a method.

Let's say we're using the struct version of the TimeStruct we created in the previous example, and we did

this:

public static void Main(string[] args)
{
 TimeStruct time = new TimeStruct();
 time.Seconds = 10;

 UpdateTime(time);
}

public static void UpdateTime(TimeStruct time)
{
 time.Seconds++;
}

134 Chapter 20 Structs

In the UpdateTime method, we've received a copy of the TimeStruct. We can modify it if we want, but this

hasn't changed the original version, back in the Main method. It still has a value of 10 for seconds.

Had we used TimeClass instead, handing it off to a method copies the reference, but that copied reference

still points the same actual object, and the change in the UpdateTime method would have affected the time

variable back in the Main method.

Like I said back when we were looking at reference types, this can be a good thing or a bad thing, depending

on what you're trying to do, but the important thing is that you are aware of it.

Interestingly, while we get a copy of a value type as we move it around, it doesn't necessarily mean we've

duplicated everything it is keeping track of entirely. Let's say you had a struct that contained within it a

reference type, like an array, as shown below:

struct Wrapper
{
 public int[] numbers;
}

And then we used it like this:

public static void Main(string[] args)
{
 Wrapper wrapper = new Wrapper();
 wrapper.numbers = new int[3] { 10, 20, 30 };
 UpdateArray(wrapper);
}

public void UpdateArray(Wrapper wrapper)
{
 wrapper.numbers[1] = 200;
}

We get a copy of the Wrapper type, but for our numbers instance variable, that's a copy of the reference.

The two are still pointing to the same actual array on the heap.

Tricky little things like this are why if you don't understand value and reference types, you're going to get

bit by them. If you're still fuzzy on the differences, it's worth going back to Chapter 16 and covering it

again.

There are other differences that arise because of the value/reference type difference:

 Structs can't be assigned a value of null, since null indicates a reference to nothing.

 Because structs are value types, they'll be placed on the stack when they can. This could mean

faster performance because they're easier to get to, but if you're passing them around or

reassigning them a lot, the time it takes to copy could slow things down.

Deciding Between a Struct and a Class

Despite the similarities in appearance, structs and classes are designed for entirely different purposes. So

when it comes time to create a new type, which one do you choose?

Here are a few things to think about as you decide between the two. For starters, do you have a particular

need to have reference or value semantics? Since this is the primary difference between the two, if you've

got a good reason to want one over the other, that should go a long way to helping you decide what to do.

Prefer Immutable Value Types 135

If your type is not much more than a compound collection of a small handful of primitives, a struct might be

the way to go. For instance, if you want something to keep track of a person's blood pressure, which

consists of two numbers (systolic and diastolic pressures) a struct might be a good choice. On the other

hand, if you think you're going to have a lot of methods (or events or delegates, which we'll talk about in

Chapters 30 and 31) then you probably just want a class.

Also, structs don't support inheritance which is something we'll talk about in Chapter 21, so if that is

something you may need, then go with classes.

In practice, classes are far more common, and probably rightly so, but it is important to remember that if

you choose one way or the other, and then decide to change it later, it will have a huge ripple effect

throughout any code that uses it. Methods will depend on reference or value semantics, and to change from

one to the other means a lot of other potential changes. It's a decision you want to make consciously, rather

than just always defaulting to one or the other.

Prefer Immutable Value Types

In programming, we often talk about types that are immutable, which means that once you've set them up,

you can no longer modify them. (As opposed to mutable types, which you can modify parts of on the fly.)

Instead, you would create a new copy that is similar, but with the changes you want to make. All of the

built-in types (including the string type, which is a reference type) are immutable.

For value types like the structs you create, there is a danger to allowing them to be mutable. Because they

have value semantics, any time you pass a value from one variable to another, or to a different method as a

parameter, you end up with a copy of the original. It is far too easy and common to think that the value you

got, which is actually a copy, could be used to modify the original. If your type doesn't allow you to modify

the individual instance variables that make up your type, then the only way to make a change is by creating

a new one with the changes you need applied to it.

Making a value type immutable will save you a great deal of trouble in the long run.

The Built-In Types are Aliases

Back in Chapter 6, we took a look at all of the primitive or built-in types that C# has. This includes things

like int, float, bool, and string. In Chapter 16, we looked at value types vs. reference types, and we

discovered that these primitive types are value types, with the exception of string, which is actually a

reference type.

It turns out that not only are they value types, but they are also struct types. This means that everything

that applies to structs that we've been learning about also applies to these primitive types.

Even more, all of the primitive types are aliases for other structs (or class, in the case of the string type).

While we've been working with say, the int type, behind the scenes the C# compiler is simply changing this

over to a struct that is defined in the same kind of way that we've seen here. In this case, it is the Int32

struct (System.Int32).

So while we've been writing code that looks like this:

int x = 0;

We could have also used this:

136 Chapter 20 Structs

Int32 x = new Int32();
Int32 y = 0; // Or combined.
int z = new Int32(); // Or combined another way. It's all the same thing.
int w = new int(); // Yet another way...

The int type and the Int32 struct are identical. There is no difference at all between the two. Which brings

us to a slightly updated definition of a primitive type, or built-in type: a type that the compiler has special

knowledge about, and allows for special, simplified syntax to use it.

All of the primitive types have aliases, shown in the table below:

Primitive Type Alias For:

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

I want to point out a couple of things about the naming here. Nearly all of these types have the same name,

except with a capital letter. Keywords in C# are all lowercase by convention, but nearly everybody will

capitalize type names, which explains that difference.

You'll also see that instead of short, int, and long, the structs use Int followed by the number of bits they

use. This is far more explicit than the keyword versions. There's no confusing how big each type is.

And last, you'll notice that the float type is Single, instead of Float. The word "float" is not very accurate,

since both double and float are both technically floating point types. The term "single" is perhaps more

correct, simply because it is more precise. The people who made C#, though, chose to use float because it is

similar to the languages that it is based on (C/C++/Java) all of which have a float type.

The Built-In Types are Aliases 137

Try It Out!
Structs Quiz. Answer the following questions to check your understanding. When you're done, check

your answers against the ones below. If you missed something, go back and review the section that

talks about it.

1. Are structs value types or reference types?

2. True/False. It is easy to change classes to structs, or structs to classes.

3. True/False. Structs are always immutable.

4. True/False. Classes are never immutable.

5. True/False. All primitive/built-in types are structs.

Answers: (1) Value types. (2) False. (3) False. (4) False. (5) False. string and object are reference types.

This is a preview. These pages have been

excluded from the preview.

37
37 Lambda Expressions

Lambda expressions are a relatively simple concept. The trick to understanding lambda expressions is in

understanding what they're actually good for. So that's where we're going to start our discussion.

For this discussion, let's say you had the following list of numbers:

List<int> numbers = new List<int>();
numbers.Add(1);
numbers.Add(7);
numbers.Add(4);
numbers.Add(2);
numbers.Add(5);
numbers.Add(3);
numbers.Add(9);
numbers.Add(8);
numbers.Add(6);

Let's also say that somewhere in your code, you want to filter out some of them. Perhaps you want only

even numbers. How do you do that?

In a Nutshell
 Lambda expressions are methods that appear "in line" and do not have a name.

 Lambda expressions have different syntax than normal methods, which for simple lambda

expressions makes it very readable. The expression: x => x < 5 is the equivalent of the method

bool AMethod(int x) { return x < 5; }.

 Multiple parameters can be used: (x, y) => x * x + y * y

 Zero parameters can be used: () => Console.WriteLine("Hello World!")

 The C# compiler can typically infer the types of the variables being used, but if not, you can

explicitly provide those types: (int x) => x < 5.

 If you want more than one expression, you can use a statement lambda instead, which has

syntax that looks more like a method: x => { bool lessThan5 = x < 5; return lessThan5; }

 Lambda expressions can use variables that are in scope at the place where they are defined.

Creating an Extension Method 227

The Basic Approach
Knowing what we learned way back in some of the earlier chapters about methods and looping, perhaps we

could create something like this:

public static List<int> FindEvenNumbers(List<int> numbers)
{
 List<int> onlyEvens = new List<int>();

 foreach(int number in numbers)
 {
 if(number % 2 == 0) // checks if it is even using mod operator
 {
 onlyEvens.Add(number);
 }
 }

 return onlyEvens;
}

We could then simply call that method, and get back our list of even numbers. But that's a lot of work for a

single method that may only ever be used once.

The Delegate Approach
Fast forward to Chapter30, where we learned about delegates. For this particular task, delegates will

actually be able to go a long way towards helping us.

As it so happens, there's a method called Where that is a part of the List class (actually, it is an extension

method) that uses a delegate. Using the Where method looks like this:

IEnumerable<int> evenNumbers = numbers.Where(MethodMatchingTheFuncDelegate);

The Func delegate that the Where method uses is generic, but in this specific case, must return the type

bool, and have a single parameter that is the same type that the List contains (int, in this example). The

Where method goes through each element in the array and calls the delegate for each item. If the delegate

returns true for the item, it is included in the results, otherwise it isn't.

Let me show you what I mean with an example. Instead of our first approach, we could write a simple

method that determines if a number is even or not:

public static bool IsEven(int number)
{
 return (number % 2 == 0);
}

This method matches the requirements of the delegate the Where method uses in this case (returns bool,

with exactly one parameter of type int.

IEnumerable<int> evenNumbers = numbers.Where(IsEven);

That's pretty readable and fairly easy to understand, as long as you know how delegates work. But let's take

another look at this. (Trust me, we're still coming back to lambda expressions here before long.)

Anonymous Methods
While what we've done with the delegate approach is a big improvement over crafting our own method to do

all of the work, it has two small problems. First, a lot of times that we do something like this, the method is

228 Chapter 37 Lambda Expressions

only ever used once. It seems like overkill to go to all of the trouble of creating a whole method to do this,

especially since it starts to clutter the namespace. We can no longer use the name IsEven for anything else

within the class. That may not be a problem, but it might.

Second, and perhaps more important, that method is located somewhere else in the source code. It may be

elsewhere in the file, or even in a completely different file. This separation makes it a bit harder to truly

understand what's going on when you look at the source code. It our current case, this is mostly solved by

calling the method something intelligent (IsEven) but it's not always perfect, and may not always apply.

This issue is common enough that back in C# 2.0, they added a feature called anonymous methods to deal

with it. Anonymous methods allow you to define a method "in line," without a name.

I'm not going to go into a whole lot of detail about anonymous methods here, because lambda expressions

mostly replaced them.

To accomplish what we were trying to do with an anonymous method, instead of creating a whole method

named IsEven, we could do the following:

numbers.Where(delegate(int number) { return (number % 2 == 0); });

If you take a look at that, you can see that we're basically taking the old IsEven method and sticking it in

here, "in line."

This solves our two problems. We no longer have a named method floating around filling up our namespace,

and the code that does the work is now at the same place as the code that needs the work.

I know, I know. You're probably saying, "But that code is not very readable! Everything's just smashed

together!" And you're right. Anonymous methods tend to solve some problems, while bringing up others. You

would have to decide which set of problems works best for you, depending on your specific case.

But this finally brings us to lambda expressions.

Lambda Expressions

Basically, a lambda expression is simply a method. More specifically, it is an anonymous method that is

written in a different form that (theoretically) makes it a lot more readable. Lambda expressions were new

in C# 3.0.

Creating a lambda expression is quite simple. To continue with the problem we've been looking at, if we

wanted to create a lambda expression to determine if a variable was even or odd, we would write the

following:

x => x % 2 == 0

The lambda operator ("=>") is read as "goes to." (So, to read this line out loud, you would say "x goes to x

mod 2 equals 0.") The lambda expression is basically saying to take the input value, x, and mod it with 2 and

check the result against 0.

Side Note
The Name "Lambda." The name "lambda" comes from lambda calculus, which is the mathematical basis

for programming languages. It is basically the programming language people used before there were

computers at all. (Which is kind of a strange thing to think about.) "Lambda" would really be spelled

with the Greek letter lambda (λ) but the keyboard doesn't have it, so we just write "lambda."

Multiple and Zero Parameters 229

This version is the equivalent of all of the other versions of IsEven that we wrote earlier in this chapter.

Speaking of that earlier code, this is how we might use this along with everything else:

IEnumerable<int> evens = numbers.Where(x => x % 2 == 0);

It may take a little getting used to, but generally speaking it is much easier to read and understand than

the other techniques that we used earlier.

Multiple and Zero Parameters

Lambda expressions can have more than one parameter. To use more than one parameter, you simply list

them in parentheses, separated by commas:

(x, y) => x * x + y * y

The parentheses are optional with one parameter, so in the earlier example, I've left them off.

This example above could have been written instead as a method like the following:

public int HypoteneuseSquared(int x, int y)
{
 return x * x + y * y;
}

Along the same lines, you can also have a lambda expression that has no parameters:

() => Console.WriteLine("Hello World!")

Type Inference and Explicit Types

The C# compiler is smart enough to look at most lambda expressions and figure out what variable types and

return type you are working with. This is called type inference. For instance, in our first lambda expression

it was smart enough to figure out that x was an integer and the whole expression returned a bool. With the

expression (x, y) => x * x + y * y we saw that the C# compiler was smart enough to figure out that x and y

were integer values and the resulting expression returned an int as well. And with () =>

Console.WriteLine("Hello World!"), it was smart enough to know that there were no parameters, and the

lambda expression didn't return anything (void return type).

Type inference is actually a pretty big deal. It's not a trivial accomplishment, and I'd imagine there were a

lot of smart people working on it to get it right.

Sometimes though, the compiler can't figure it out. If it can't, you'll get an error message when you compile.

If this happens, you'll need to explicitly put in the type of the variable, like this:

(int x) => x % 2 == 0;

Statement Lambdas

As you've seen by now, most methods are more than one line long. While lambda expressions are particularly

well suited for very short, single line methods, there will be times that you'll want a lambda expression that

is more than one line long. This complicates things a little bit, because now you'll need to add in semicolons,

curly braces, and a return statement, but it can still be done:

(int x) => { bool isEven = x % 2 == 0; return isEven; }

230 Chapter 37 Lambda Expressions

The form we were using earlier is called an expression lambda, because it had only one expression in it. This

new form is called a statement lambda. As a statement lambda gets longer, you should probably consider

pulling it out into its own method.

Scope in Lambda Expressions

From what we've seen so far, lambda expressions have basically behaved like a normal method, only

embedded in the code and with a different, cleaner syntax. But now I'm going to show you something that

will throw you for a loop.

Inside of a lambda expression, you can access the variables that were "in scope" at the location of the

lambda expression. Take the following code, for example:

int cutoffPoint = 5;
List<int> numbers = new List<int>();

// TODO: Add some values to numbers here...

IEnumerable<int> numbersLessThanCutoff = numbers.Where(x => x < cutoffPoint);

If our lambda expression had been turned into a method, we wouldn't have access to that cutoffPoint

variable. (Unless we supplied it as a parameter.) This actually adds a ton of power to the way lambda

expressions can work, so it is good to know about.

(For what it's worth, anonymous methods have the same feature.)

Try It Out!
Lambda Expressions Quiz. Answer the following questions to check your understanding. When you're

done, check your answers against the ones below. If you missed something, go back and review the

section that talks about it.

1. True/False. Lambda expressions are a special type of method.

2. True/False. A lambda expression can be given a name.

3. What operator is used in lambda expressions?

4. Convert the following to a lambda expression: bool IsNegative(int x) { return x < 0; }

5. True/False. Lambda expressions can only have one parameter.

6. True/False. Lambda expressions have access to the local variables in the method they appear

in.

Answers: (1) True. (2) False. (3) Lambda operator (=>). (4) x => x < 0. (5) False. (6) True.

This is a preview. These pages have been

excluded from the preview.

48 Glossary

.NET Framework

The framework that C# is built for and utilizes,

consisting of a virtual machine called the Common

Language Runtime and a massive library of reusable

code called the Framework Class Library. (Chapters 1

and 40.)

Abstract Class

A class that you cannot create instances of. Instead,

you can only create instances of derived classes. The

abstract class is allowed to define any number of

members, both concrete (implemented) and abstract

(unimplemented). Derived classes must provide an

implementation for any abstract members defined by

the abstract base class before you can create instances

of the type. (Chapter 22.)

Abstract Method

A method declaration that does not provide an

implementation or body. Abstract methods can only be

defined in abstract classes. Derived classes that are

not abstract must provide an implementation of the

method. (Chapter 22.)

Accessibility Level

Types and members are given different levels that they

can be accessed from, ranging from being available to

anyone who has access to the code, down to only being

accessible from within the type they are defined in.

More restrictive accessibility levels make something

less vulnerable to tampering, while less restrictive

levels allow more people to utilize the code to get

things done. It is important to point out that this is a

mechanism provided by the C# language and the .NET

Framework to make programmer's lives easier, but it is

not a way to prevent hacking, as there are still ways to

get access to the code. Types and type members can be

given an access modifier, which specifies what

accessibility level it has. The private accessibility level

is the most restrictive, means the code can only be used

within the type defining it, protected can be used

within the type defining it and any derived types,

internal indicates it can be used anywhere within the

assembly that defines it, and public indicates it can be

used by anyone who has access to the code.

Additionally, the combination of protected internal can

be used to indicate that it can be used within the

defining type, a derived type, or within the same

assembly. (Chapters 18 and 21.)

Accessibility Modifier

See Accessibility Level.

Anonymous Method

A special type of method where no name is ever

supplied for it. Instead, a delegate is used, and the

method body is supplied inline. Because of their nature,

anonymous methods cannot be reused in multiple

locations. Lambda expressions largely supersede

anonymous methods and should usually be used instead.

(Chapter 37.)

308 Chapter 48 Glossary

Argument

See parameter.

Array

A collection of multiple values of the same type, placed

together in a list-like structure. (Chapter 13.)

ASP.NET

A framework for building web-based applications using

the .NET Framework. This book does not cover ASP.NET

in depth. (Chapter 47.)

Assembly

Represents a single block of redistributable code, used

for deployment, security, and versioning. An assembly

comes in two forms: a process assembly, in the form of

an EXE file, and a library assembly, in the form of a DLL

file. An EXE file contains a starting point for an

application, while a DLL contains reusable code without

a specified starting point. See also project and

solution. (Chapter 40.)

Assembly Language

A very low level programming language where each

instruction corresponds directly to an equivalent

instruction in machine or binary code. Assembly

languages can be thought of as a human readable form

of binary. (Chapter 40.)

Assignment

The process of placing a value in a specific variable.

(Chapter 5.)

Asynchronous Programming

The process of taking a potentially long running task

and pulling it out of the main flow of execution, having

it run on a separate thread at its own pace. This relies

heavily on threading. (Chapter 33.)

Attribute

A feature of C# that allows you to give additional meta

information about a type or member. This information

can be used by the compiler, other tools that analyze or

process the code, or at run-time. You can create custom

attributes by creating a new type derived from the

Attribute class. Attributes are applied to a type or

member by using the name and optional parameters for

the attribute in square brackets immediately above the

type or member’s declaration. (Chapter 39.)

Base Class

In inheritance, a base class is the one that is being

derived from. The members of the base class are

included in the derived type. A base class is also

frequently called a superclass or a parent class. A class

can be a base class, and a derived class simultaneously.

See also inheritance, derived class, and sealed class.

(Chapter 21.)

Base Class Library

The central library of code that nearly all C# programs

will utilize, including the built-in types, arrays,

exceptions, threading, and file I/O. (Chapter 40.)

BCL

See Base Class Library.

Binary Code

The executable instructions that computers work with

to do things. All programs are built out of binary code.

(Chapters 1 and 40.)

Binary Instructions

See Binary Code.

Binary Operator

An operator that works on two operands or values.

Many of the most common operators are binary, such as

addition and subtraction. (Chapter 7.)

Bit Field

The practice of storing a collection of logical (Boolean)

values together in another type (such as int or byte)

where each bit represents a single logical value.

Enumerations can also be used as a bit field by applying

the Flags attribute. When working with a bit field, the

bitwise operators can be used to modify the individual

logical values contained in the bit field. (Chapter 39.)

Bitwise Operator

One of several operators that operate on the individual

bits of a value, as opposed to treating the bits as a

single value with semantic meaning. Bitwise operators

include bitwise logical operators, which perform

operations like and, or, not, and xor (exclusive or) on

two bits in the same location of two different values.

It also includes bitshift operators, which slide the bits

of a value to the left or right. In C#, the extra spots

are filled with the value 0. (Chapter 39.)

Boolean

Pertaining to truth values. In programming, a Boolean

value can only take on the value of true or false.

Boolean types are a fundamental part of decision

making in programming. (Chapter 6.)

This is a preview. These pages have been

excluded from the preview.

49 Index

Symbols

- operator, 40, 215

π, 54

-- operator, 56, 215

! operator, 63

-= operator, 44, 201, 215

. operator, 86, 215

!= operator, 61, 215

% operator, 42, 215

%= operator, 44, 215

& operator, 245

&& operator, 64, 215, 245

&= operator, 246

* operator, 41, 215, 241

*= operator, 44, 215

/ operator, 41, 215

/= operator, 44, 215

: operator, 140, 152

?: operator, 65

?? operator, 252

@ symbol, 49

[] operator, 79, 219

^ operator, 246

^= operator, 246

| operator, 245

|| operator, 64, 215, 245

|= operator, 246

~ operator, 246

+ operator, 40, 215

++ operator, 56, 215

+= operator, 44, 201, 215

< operator, 61, 215

<< operator, 245

<<= operator, 246

<= operator, 61, 215

= operator, 44, 215

== operator, 58, 215

=> operator, 228

> operator, 61, 215

>= operator, 61, 215

>> operator, 245

>>= operator, 246

.NET Framework, 4, 257, 307

A

abstract class, 145, 307

abstract keyword, 148

abstract method, 151, 307

accessibility level, 130, 307

internal, 124, 307

private, 117, 307

protected, 142, 307

protected internal, 307

public, 117, 307

accessibility modifier. See accessibility level

Action delegate, 194

addition, 40

algorithm, 21, 305

alias, 172

angle brackets, 161

anonymous method, 227, 307

322 Chapter 49 Index

anonymous type, 251

argument. See parameter

ArgumentException class, 188

ArgumentNullException class, 188

ArgumentOutOfRangeException class, 189

array, 78, 138, 298, 308

declaring, 79

elements, 79

length, 80

retrieving and assigning values in, 79

as keyword, 141

ascending keyword, 235

ASP.NET, 304, 308

assembly, 12, 124, 308

assembly language, 11, 257, 308

assembly reference, 281

assignment, 308

assignment operator, 43

async keyword, 213

asynchronous programming, 4, 10, 210, 308

attribute, 242, 243, 308

await keyword, 213

B

backing field, 129

base case, 98

base class, 139, 308

Base Class Library, 11, 263, 308

base keyword, 142, 147

Basic Settings, 267

BCL. See Base Class Library

binary, 11, 3, 14, 257, 308

BinaryReader class, 183

BinaryWriter class, 183

bit, 29

bit field, 244, 308

bitshift operator, 245

bitwise and operator, 245

bitwise complement operator, 246

bitwise logical operator, 245

bitwise operator, 308

bitwise or operator, 245

block scope, 119

bool type, 36, 62, 136

Boolean, 308

Boolean struct, 136

break keyword, 69, 74

breakpoint, 287, 309

built-in type, 31, 135, 309

byte, 29

Byte struct, 136

byte type, 32, 136

C

C# 5.0, 5, 210

C++, 4, 309

Caesar cipher, 298

call stack, 286

caller info attributes, 243

case keyword, 68

case label. See case statement

case statement, 69

casting. See typecasting

catch block, 186

catch keyword, 186

Char struct, 136

char type, 33, 136

CIL. See Common Intermediate Language

class, 3, 8, 16, 109, 114, 160, 309

as a blueprint, 110

creating, 3, 8, 114

partial, 143

sealed, 143

class keyword, 115

class scope, 119

class variable. See static class variable

class-level scope. See class scope

CLR. See Common Language Runtime

Code Window, 265, 309

command line arguments, 252, 309

comment, 3, 5, 19, 309

Common Intermediate Language, 4, 260, 309

Common Language Runtime, 4, 258, 309

advantages, 261

drawbacks, 261

compile, 257, 276

compiler, 14, 309

compiler error, 4, 11, 276

compiler warning, 277

compile-time contant. See constant

composition, 153

compound assignment operator, 44, 309

conditional operator, 7, 64, 65, 309

Console class, 97

const keyword, 240, 309

constant, 240, 309

compile-time constant, 309

run-time constant, 309

constructor, 110, 117, 310

default parameterless constructor, 310

inheritance, 8, 142

context switch, 204

continue keyword, 75

Convert class, 7, 46, 97, 181

critical section, 310

.csproj file, 293

Index 323

.csproj.user file, 293

CSV file, 180

curly braces, 7, 16, 60, 278, 310

D

data structure, 305

debug, 4, 11, 284, 310

debug mode, 14, 284

debug toolbar, 288

Decimal struct, 136

decimal type, 36, 136

declaration, 310

declarative programming, 231

decrement, 55, 310

default keyword, 69

delegate, 4, 10, 192, 198, 227, 310

creating, 192

using, 193

delegate keyword, 193

derived class, 139, 310

descending keyword, 235

Dictionary class, 154, 158

divide and conquer, 88, 310

DivideByZeroException class, 188

division, 41

division by zero, 53, 310

DLL, 275, 310

do keyword, 73

Double struct, 136

double type, 35, 136

do-while loop, 73

E

e (number), 54

else keyword, 59

encapsulation, 117

encryption, 298

enum. See enumeration

enum keyword, 85

enumeration, 3, 7, 84, 310

flags, 246

underlying type, 86

error handling, 4, 9, 184

Error List, 266, 276, 310

escape character, 48

escape sequence, 48

event, 4, 10, 150, 196, 310

attaching and detaching, 200

defining, 197

raising, 198

event keyword, 198

EventArgs type, 198

EventHandler delegate, 198

EventHandler<TEventArgs> delegate, 201

exception, 184, 285, 311

catching, 185

throwing, 185

Exception class, 185

exclusive or operator, 246

EXE, 310

Expert Settings, 267

explicit, 311

explicit conversion, 52

explicit keyword, 253

expression, 41

expression lambda, 230

extension method, 222, 311

F

factorial, 99

false keyword, 36

FCL. See Framework Class Library

Fibonacci sequence, 99

field. See instance variable

File class, 179

file I/O, 4, 9, 151, 179

file input, 179

file output, 179

FileStream class, 181

finally block, 189

finally keyword, 189

FizzBuzz, 77

Flags attribute, 246

float type, 34, 136

floating point number, 34

floating point type, 311

for keyword, 73

for loop, 73

foreach keyword, 83

foreach loop, 77, 83, 234, 238

forever loop, 72

FormatException class, 188

frame, 101

Framework Class Library, 11, 263, 311

from keyword, 232

fully qualified name, 170, 311

Func delegate, 194

function. See method, See method

G

garbage collection, 79, 101, 311

generic method, 165

generic type constraints, 163

generics, 154, 160, 311

324 Chapter 49 Index

constraints, 163

motivation for, 154

get keyword, 129

H

hash table, 158

heap, 100, 311

Hello World!, 3, 5, 9

I

IDE. See Integrated Development Environment

IDisposable interface, 248

IEnumerable interface, 238

IEnumerable<T> interface, 238

if keyword, 57

if statement, 57

IL. See Common Intermediate Language, See Common

Intermediate Language

IL Disassembler, 260

ildasm.exe, 260

immutability, 135, 312

implicit, 311

implicit conversion, 52

implicit keyword, 253

implicitly typed local variable, 11, 251, 312

in keyword, 83

increment, 6, 55, 311

index, 79

indexer, 4, 10, 150, 215, 219, 311

multiple indices, 220

types in, 10, 220

IndexOutOfRangeException class, 188

infinite loop, 72

infinity, 54

inheritance, 138, 312

inner block scope, 119

instance, 110, See object

instance variable, 116, 117, 312

int type, 31, 136

Int16 struct, 136

Int32 struct, 136

Int64 struct, 136

integer division, 51, 312

integer type, 33

integral type, 33, 312

integrated development environment, 6

Integrated Development Environment, 312

IntelliSense, 268, 312

interface, 4, 9, 144, 150, 312

creating, 151

implementing, 152

implementing multiple, 9, 152

naming convention, 151

interface keyword, 151

internal keyword, 124

InvalidCastException class, 188

is keyword, 141

is-a relationship, 139, 312

is-a-special-type-of relationship, 139, 312

iterator, 238, 312

J

jagged array, 82, 312

Java, 4, 304, 313

JIT compiling. See Just-in-Time Compiling

Just-in-Time compiling, 4, 260, 313

K

keyword, 16, 313

L

lambda expression, 226, 236, 313

lambda operator, 228

Language Integrated Query, 232, 313

lazy evaluation, 64

library assembly, 12

line numbering, 267

lines of code, 225

LINQ. See Language Integrated Query

LINQ to SQL, 232

List class, 154, 157, 227

literal, 35

local variable, 116, 313

lock keyword, 209

long type, 32, 136

loop, 3, 7, 71, 313

breaking out of, 74

continuing to next iteration, 7, 75

M

managed memory, 8, 101, 261, 313

math, 39

Math class, 54

matrix, 78

member, 16, 89, 111, 116, 118, 197, 313

method, 3, 4, 7, 9, 16, 88, 110, 121, 150, 174, 313

calling, 91

passing parameters to, 94

returning from, 92

signature, 96

method body. See method implementation

Index 325

method call, 313

method call syntax, 235

method implementation, 90, 313

method overloading, 95, 281

method overriding, 146

method scope, 118

method signature, 313

metro-style apps, 304

Microsoft Developer Network, 306

mod, 42

modulo operator, 42

MSDN. See Microsoft Developer Network

multi-dimensional array, 82

multiple inheritance, 144, 152

multiplication, 41

mutex, 209, See mutual exclusion

mutual exclusion, 209, 314

N

name collision, 172, 314

name hiding, 119, 314

named parameter, 175, 314

namespace, 4, 9, 17, 169, 280, 294, 314

namespace keyword, 4, 9, 16, 169

NaN, 54, 314

narrowing conversion, 52, 254

nested statements, 65

nesting, 7, 75, 314

new keyword, 79, 149

NotImplementedException class, 188

NotSupportedException class, 188

null keyword, 104

null reference, 104, 314

nullable type, 252, 314

Nullable<T> struct, 252

NullReferenceException class, 188

NullReferenceException type, 198

O

object, 109, 314

Object class, 136

object initializer syntax, 131

object keyword, 143

object type, 136, 206

object-oriented programming, 107, 314

Obsolete attribute, 242

operand, 40

operation, 40

operator, 40, 314

binary, 40, 65, 308

ternary, 65, 317

unary, 42, 65, 318

operator keyword, 216

operator overloading, 214, 219, 314

optional parameter, 174, 244, 314

Options Dialog, 266

order of operations, 43, 64, 314

orderby keyword, 235

out keyword, 177

output parameter, 177

overflow, 6, 55, 314

overloading, 95, 315

override, 146

override keyword, 147

overriding, 315

P

parameter, 94, 116, 315

variable number of, 176

parameter list, 94

ParameterizedThreadStart delegate, 206

params keyword, 176

parent class. See base class

parentheses, 43, 278, 315

parse, 181, 315

partial class, 315

partial keyword, 143

pointer, 102, 241, See reference

pointer type, 241, 315

polymorphism, 4, 9, 145, 315

postfix notation, 56

prefix notation, 56

preprocessor directive, 249, 315

primitive type. See built-in type

private keyword, 116, 117

procedure. See method, See method

process assembly, 12

project, 12, 292, 315

referencing other, 271

Properties Window, 266

property, 122, 127, 150, 219, 315

auto-implemented, 131

readonly, 130

protected keyword, 142

public keyword, 117

Q

query, 231

query expression, 231, 316

R

Random class, 110

326 Chapter 49 Index

readonly keyword, 240, 309

real number, 34

rectangular array, 82, 316

recursion, 98, 316

ref keyword, 177

refactor, 269, 316

reference, 102, 316

reference parameter, 177

reference semantics, 8, 105, 316

reference type, 3, 8, 100, 102, 112, 316

reflection, 247, 316

relational operator, 61, 216, 316

release mode, 14, 284

remainder, 42

return, 56, 63, 92, 238, 280, 316

return keyword, 190, 213

S

SByte struct, 136

sbyte type, 33, 136

scalar, 216

scope, 10, 230, 278, 316, See

sealed class, 317

sealed keyword, 143

seed, 110

select keyword, 232

semicolon, 17

set keyword, 129

short type, 32, 136

signature, 96

signed type, 32, 317

Silverlight, 317

Single struct, 136

.sln file, 292

software engineering, 305

solution, 12, 292, 317

Solution Explorer, 265, 317

source code, 3, 317

SQL, 231

square array, 82

square brackets, 317

stack, 8, 100, 317

stack trace, 101

StackOverflowException class, 188

statement lambda, 229

static, 317

static class, 123, 223

static class variable, 123

static constructor, 124

static keyword, 123, 223, 317

static method, 223

static variable, 123

String class, 136

string type, 37, 136, 317

string.Split method, 181

struct, 4, 8, 132, 139, 160, 317

struct keyword, 132

structure, 132

subclass, 139

subroutine. See method

subscript, 79

subtraction, 40

.suo file, 292

superclass, 139

switch keyword, 68

switch statement, 67

types allowed, 69

T

Task class, 211

Task<T> class, 212

TextReader class, 182

TextWriter class, 181

this keyword, 120, 223

thread, 4, 10, 203, 210, 317

sleep, 206

Thread class, 204

thread safety, 208, 209, 317

ThreadPool class, 204

ThreadStart delegate, 204

throw keyword, 188

true keyword, 36

try block, 186

try keyword, 186

Tuple class, 177, 212

type, 26, 318

Type class, 248

type conversion, 279

type inference, 10, 229, 318

type safety, 156, 318

type system, 31

typecasting, 52, 87, 141, 156, 253, 279, 318

typeof keyword, 248

U

uint type, 33, 136

UInt16 struct, 136

UInt32 struct, 136

UInt64 struct, 136

ulong type, 33, 136

underflow, 55, 318

unhandled exception, 185

Unicode, 34

unsafe code, 241, 318

unsafe keyword, 241

Index 327

unsigned type, 32, 318

unverifiable code, 241

user input, 45

user-defined conversion, 253, 318

ushort type, 33, 136

using directive, 16, 169, 211, 224, 232, 243, 272, 281,

318

using keyword, 16, 173

using statement, 11, 248, 318

V

value keyword, 129

value semantics, 8, 105, 318

value type, 3, 8, 100, 102, 318

var keyword, 251

variable, 3, 6, 25, 110, 318

assigning a value to, 27

declaring, 26

naming, 6, 29

variable scope. See scope

verbatim string literal, 49

version control system, 292

virtual keyword, 146, 151

virtual machine, 11, 258, 318

virtual method, 4, 9, 145, 319

Visual Basic.NET, 319

Visual C++. See C++

Visual Studio, 6, 11, 264, 319

installing, 5, 8

keyboard shortcuts, 269

registration key, 8

Visual Studio 2012, 7

Visual Studio Express 2012 for Desktop, 304, 319

Visual Studio Express 2012 for Web, 7, 304, 319

Visual Studio Express 2012 for Windows 8, 304, 319

Visual Studio Express 2012 for Windows Desktop, 7

Visual Studio Express for Windows Phone, 7, 304, 319

void keyword, 90

W

weakly typed language, 251

where keyword, 164, 232

while keyword, 71

while loop, 71

whitespace, 5, 17, 60

widening conversion, 52

Windows 8 style apps, 304

Windows Forms, 303, 319

Windows Presentation Foundation, 303, 319

word count, 225

WPF. See Windows Presentation Foundation

X

XML Documentation Comment, 21, 97, 319

XNA, 304, 319

xor operator, 246

Y

yield keyword, 238

This is a preview. These pages have been

excluded from the preview.

